
Intel® NetStructureTM ZT 4901 
High Availability Software
Technical Product Specification

April 2003

Order Number: 273856-002



2 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY 
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN 
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS 
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES 
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER 
INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for 
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® NetStructureTM ZT 4901 High Availability Software may contain design defects or errors known as errata which may cause the product to 
deviate from published specifications. Current characterized errata are available on request.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the 
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a 
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this 
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may 
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation. 

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

AlertVIEW, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Connect, CT Media, Dialogic, DM3, EtherExpress, 
ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share, 
Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel 
SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, LANDesk, LanRover, MCS, MMX, MMX 
logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your 
Command, RemoteExpress, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, 
TokenExpress, Trillium, VoiceBrick, Vtune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United 
States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation, 2003



Contents
Contents
1 Document Organization ................................................................................................................9

2 Introduction..................................................................................................................................11

2.1 Terminology ........................................................................................................................11
2.2 High Availability Hardware Approach .................................................................................14

2.2.1 Processor Boards ..................................................................................................15
2.2.2 Bridge Mezzanine ..................................................................................................16
2.2.3 Backplane ..............................................................................................................17

2.3 High-Availability Software Approach...................................................................................18
2.3.1 Host Application .....................................................................................................18
2.3.2 System Management .............................................................................................19
2.3.3 Backplane Device Drivers......................................................................................20

3 Host Application Software ..........................................................................................................21

3.1 Goals of the Host Application .............................................................................................21
3.1.1 Serviceability..........................................................................................................21
3.1.2 Portability ...............................................................................................................21
3.1.3 Redundancy...........................................................................................................21

3.2 Division of Labor .................................................................................................................22
3.3 Development Issues ...........................................................................................................23

3.3.1 Redundancy...........................................................................................................23
3.3.2 Graceful Switchover...............................................................................................24
3.3.3 Hardened Applications...........................................................................................24
3.3.4 Code Modularity.....................................................................................................24

4 System Management ...................................................................................................................25

4.1 Redundant Host API ...........................................................................................................25
4.1.1 IPMI API.................................................................................................................25
4.1.2 Hot Swap API ........................................................................................................26

4.1.2.1 Slot Control API .....................................................................................26
4.2 Baseboard Management Controller Firmware Enhancements ...........................................26

4.2.1 Fault Configuration ................................................................................................26
4.2.2 Isolation Strategies ................................................................................................27
4.2.3 IPMI RH Channel Commands................................................................................28

4.2.3.1 RH Channel Enabled .............................................................................28
4.2.3.2 RH Channel Get RH BMC Address .......................................................28

5 High Availability CompactPCI Device Drivers ..........................................................................31

5.1 Device Driver Design ..........................................................................................................31
5.1.1 Device Driver States ..............................................................................................32

5.1.1.1 Initialization ............................................................................................32
5.1.1.2 Quiesced................................................................................................32
5.1.1.3 Activation ...............................................................................................32

5.1.2 Adding High-Availability Functionality ....................................................................33
5.1.2.1 Add Device.............................................................................................34
5.1.2.2 Resume Operations ...............................................................................34
5.1.2.3 Suspend Operations ..............................................................................35
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  3



Contents
5.1.2.4 Remove Device......................................................................................35
5.1.2.5 Driver Synchronization........................................................................... 35

5.2 Summary ............................................................................................................................ 36

6 Redundant Host API.................................................................................................................... 37

6.1 Intel-Specific APIs............................................................................................................... 37
6.1.1 RhSetHostName.................................................................................................... 37

6.1.1.1 RhGetHwDestinationHostAndReset ...................................................... 37
6.2 Redundant Host PICMG* 2.12 APIs ................................................................................... 38

6.2.1 Definitions and Types ............................................................................................39
6.2.2 Initialization/Termination ........................................................................................ 42

6.2.2.1 RhEnumerateInstances .........................................................................42
6.2.2.2 RhOpen.................................................................................................. 43
6.2.2.3 RhClose ................................................................................................. 44
6.2.2.4 RhGetInstanceID ................................................................................... 44

6.2.3 Domain and Host Information API .........................................................................45
6.2.3.1 RhGetDomainCount...............................................................................45
6.2.3.2 RhGetDomainNumbers.......................................................................... 46
6.2.3.3 RhGetDomainOwnership ....................................................................... 47
6.2.3.4 RhGetDomainSlotPath........................................................................... 47
6.2.3.5 RhGetDomainSlotCount ........................................................................ 49
6.2.3.6 RhGetDomainSlots ................................................................................ 49
6.2.3.7 RhGetSlotDomain .................................................................................. 50
6.2.3.8 RhGetCurrentHostNumber .................................................................... 51
6.2.3.9 RhGetHostCount.................................................................................... 51
6.2.3.10 RhGetHostNumbers...............................................................................52
6.2.3.11 RhGetHostName.................................................................................... 53
6.2.3.12 RhSetHostAvailability............................................................................. 54
6.2.3.13 RhGetHostAvailability ............................................................................ 55
6.2.3.14 RhGetDomainAvailabilityToHost............................................................56

6.2.4 Slot Information API............................................................................................... 56
6.2.4.1 RhGetPhysicalSlotInformation ............................................................... 56
6.2.4.2 RhGetSlotChildInformation .................................................................... 58

6.2.5 Switchover API ...................................................................................................... 61
6.2.5.1 Switchover Scenarios and Theory of Operation .................................... 61
6.2.5.2 RhPrepareForSwitchover....................................................................... 63
6.2.5.3 RhCancelPrepareForSwitchover ........................................................... 65
6.2.5.4 RhGetDomainSwConnectionStatus....................................................... 66
6.2.5.5 RhGetSlotSwConnectionStatus............................................................. 67
6.2.5.6 RhPerformSwitchover ............................................................................ 67
6.2.5.7 RhSetHwDestinationHost ...................................................................... 68
6.2.5.8 RhGetHwDestinationHost ...................................................................... 70

6.2.6 Notification, Reporting and Alarms ........................................................................ 70
6.2.6.1 RhEnableDomainStateNotification......................................................... 70
6.2.6.2 RhEnableSwitchoverNotification............................................................71
6.2.6.3 RhEnableSwitchoverRequestNotification .............................................. 72
6.2.6.4 RhEnableUnsafeSwitchoverNotification ................................................ 73
6.2.6.5 RhDisableNotification............................................................................. 75

7 Hot Swap API ............................................................................................................................... 77

8 IPMI API ........................................................................................................................................79

8.1 imbOpenDriver.................................................................................................................... 79
4 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Contents
8.2 imbCloseDriver ...................................................................................................................79
8.3 imbDeviceIoControl ............................................................................................................79
8.4 imbSendTimedI2cRequest .................................................................................................80
8.5 imbSendIpmiRequest .........................................................................................................81
8.6 imbGetAsyncMessage........................................................................................................81
8.7 imbIsAsyncMessageAvailable ............................................................................................82
8.8 imbRegisterForAsyncMsgNotification.................................................................................82
8.9 imbUnregisterForAsyncMsgNotification..............................................................................82
8.10 imbGetLocalBmcAddr.........................................................................................................83
8.11 imbSetLocalBmcAddr .........................................................................................................83
8.12 imbGetIpmiVersion .............................................................................................................84

9 Slot Control API ...........................................................................................................................85

9.1 HsiOpenSlotControl ............................................................................................................85
9.2 HsiCloseSlotControl............................................................................................................85
9.3 HsiGetSlotCount .................................................................................................................86
9.4 HsiGetBoardPresent ...........................................................................................................86
9.5 HsiGetBoardHealthy ...........................................................................................................87
9.6 HsiGetSlotPower ................................................................................................................88
9.7 HsiSetSlotPower.................................................................................................................89
9.8 HsiGetSlotReset .................................................................................................................89
9.9 HsiSetSlotReset..................................................................................................................90
9.10 HsiGetSlotM66Enable ........................................................................................................91
9.11 HsiSetSlotM66Enable.........................................................................................................92
9.12 HsiSetSlotEventCallback ....................................................................................................93

10 Demonstration Utilities ...............................................................................................................95

10.1 Functional Description ........................................................................................................95
10.1.1 User Interface ........................................................................................................95
10.1.2 RH Interface...........................................................................................................95

10.1.2.1 Software Initiated Handovers.................................................................96
10.1.2.2 Hardware Initiated Failovers ..................................................................96
10.1.2.3 Multiple Mode Capabilities .....................................................................96
10.1.2.4 Switchover Functions.............................................................................97
10.1.2.5 Host Domain Enumeration and Association ..........................................97
10.1.2.6 Slot Information......................................................................................97
10.1.2.7 Notification, Reporting and Alarms ........................................................97

10.1.3 IPMI Interface ........................................................................................................98
10.1.3.1 Fault Configuration.................................................................................98
10.1.3.2 Isolation Strategy ...................................................................................98

10.1.4 Hot Swap Interface ................................................................................................99
10.1.4.1 HS Functional Description .....................................................................99
10.1.4.2 Slot Information Structure ....................................................................100
10.1.4.3 Slot State .............................................................................................101

10.1.5 Slot Control Interface ...........................................................................................101

Index .....................................................................................................................................................133
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  5



Contents
Figures
1 High-Availability CPU Architecture ............................................................................................. 11
2 RSS Processor Board Block Diagram ........................................................................................ 16
3 RSS Host with Bridge Mezzanine Block Diagram ...................................................................... 17
4 High-Availability System Backplane Architecture ....................................................................... 18
5 Layered Host Application Diagram ............................................................................................. 22
6 Multi-Stated Driver Flowchart ..................................................................................................... 33

Tables
1 Channel Definitions for ZT 5524................................................................................................. 27
2 RH Channel Alert Destinations...................................................................................................28
3 PCI Tree Information Retrieval Flags ....................................................................................... 100
4 Events that Generate Notification Messages ........................................................................... 100
5 Slot State Flags ........................................................................................................................ 101
6 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Contents
Revision History

Date Revision Description

April 2003 002 Removed three demonstration utilities from 10.1.2.7 and 
removed Interhost Communication section.

January 2003 001 Initial release of this document
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  7



Contents
This page intentionally left blank.
8 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Document Organization 1

This document describes the High Availability Software Development Kit for the Intel® 
NetStructure™ ZT 4901 I/O Mezzanine Card. Following is a summary of the contents. 

Chapter 2, “Introduction,” provides an overview of the hardware and software subsystems 
supported by Intel’s High Availability Software Development Kit. 

Chapter 3, “Host Application Software,” covers the basic requirements needed for applications to 
properly leverage Redundant Host architecture.

Chapter 4, “System Management,” describes the philosophy behind system management through 
the monitoring of onboard and chassis located devices as well as the importance placed upon 
logging other system resources.

Chapter 5, “High Availability CompactPCI Device Drivers,” describes the requirements placed on 
a device driver in order to operate in a Redundant Host framework.

Chapter 6, “Redundant Host API,” presents a detailed description of the Redundant Host 
Application Programming Interfaces. These function interfaces provide programmatic control of 
takeover configurations and event notifications. 

Chapter 7, “Hot Swap API,” outlines system configuration and event notification using the Hot 
Swap API functions. 

Chapter 8, “IPMI API,” describes system monitoring and alarming functions.

Chapter 9, “Slot Control API,” describes the interface for High Availability control of individual 
CompactPCI slots.

Chapter 10, “Demonstration Utilities,” describes interactive utilities used to configure and monitor 
the High Availability attributes of the system.

Appendix A, “Software Installation,” includes the procedures for installing the software 
components that make up the High Availability platform architecture for systems running the 
VxWorks* and Linux* operating environments.

Appendix B, “Redundant Host Function Return Values,” documents an extensive table of values 
that are returned by the Redundant Host APIs.

Appendix C, “HSK Device Driver Interface for VxWorks* 5.4,” details how a VxWorks 5.4 
backplane device driver functions within a Redundant Host environment.

Appendix D, “RH Device Driver Interface for Linux* 2.4,” details how a Linux 2.4 backplane 
device driver functions within a Redundant Host environment.

Appendix E, “Design Guideline for Peripheral Vendors,” offers important information for 
designing a device driver for use in the Intel® NetStructureTM Redundant Host environment.

Appendix F, “Porting ZT 5550 HA Applications to PICMG 2.12,” provides information for porting 
applications that were written for the Intel® NetStructure™ ZT 5550 to a PICMG* 2.12 based 
system.
Intel® NetStructureTM ZT 4901 High Availability Software Technical Product Specification  9



Document Organization
Appendix G, “RH Switchover on OS Crash,” describes how the High-Availability Redundant Host 
architecture enables the system master board to perform a switchover to the backup host in the 
event of a system crash under the Linux and VxWorks operating systems.

Appendix H, “Data Sheet Reference,” provides links to specifications and user documentation 
relevant to the High Availability Software Development Kit.
10 Intel® NetStructureTM ZT 4901 High Availability Software Technical Product Specification  



Introduction 2

Intel® High Availability (HA) systems feature built-in redundancy for active system components 
such as power supplies, system master processor boards, and system alarms. Redundant Host (RH) 
systems are HA systems that feature an architecture allowing the Active Host system master 
processor board to hand over control of its bus segment to a Standby Host system master processor 
board.

This section gives an overview of the hardware and software used in systems supported by Intel’s 
High Availability Software Development Kit (HASDK).

The following figure shows how the basic elements in an HASDK system are related.

2.1 Terminology

The following terms are commonly used in this document: 

Active Host (also known as Current Host, owner, or bus segment owner)—A board is said to 
be Active or the Active Host if it is providing System Host functions to the peripherals in a 
CompactPCI backplane. This means that it is the Owner of at least one bus segment.

Figure 1. High-Availability CPU Architecture

CompactPCI
Interface
Controller

Slot

Driver
RH

Driver

Host
Application

Comm
Controller

Slot
ControllerHardware

OS/Drivers Backplane
Driver

Hot Swap
Driver

RH
Driver

CompactPCI Bus

Current Host

Available Host

PCI-to-PCI
Bridge

RH Comm
Controller

RH
Comm
Driver

RH
Comm
Driver

RH Comm
Controller

Comm
Driver

Slot
Control
Driver

Host
Application

CompactPCI
Interface
Controller
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  11



Introduction
Application—Application-specific code, not including application-specific device drivers.

Arbitration—Hardware process of a bus master using the hardware REQ# signal to request the 
PCI bus from the Active Host and then being granted access to the bus with the hardware GNT# 
signal.

Available Host—A Host operating in Owner mode that can own domains and communicate with 
the rest of the RH system. A Host, for example, that it is not switched off or not in some special 
mode in which it is isolated from the rest of the RH system.

BP Driver—A backplane device driver is the executable object residing in kernel space that 
controls interaction between an application and an instance of a device. For a device driver to be 
considered High Availability Aware, it must conform to specific requirements detailed in this 
document.

Bus Interface Mode—The mode of the bus segment interface from the CPU base board or the 
bridge mezzanine board. The possible bus interface modes are owner mode, drone mode, and 
peripheral mode.

Bus master—Any device given peer-to-peer access across the PCI bus to any other master or 
target. A bus master must have been granted access to the PCI bus through arbitration.

CIC—The CompactPCI Interface Controller is responsible for coordinating switchovers. It is 
generally implemented in programmable logic.

Cluster mode—When two or more Hosts in an HA system are operating in Cluster mode, each 
owns a domain and switchover of domain ownership is not allowed.

CMM—The CMM refers to the Chassis Management Module. The Chassis Management Module 
maintains the status and control over management devices located inside the chassis.

Cold Switchover— During a cold switchover, bus ownership is transferred from a system master 
Host to a receiving Host. The Host receiving bus ownership is then reset, which in turn resets all 
the devices that are owned by that Host.

COMM—Ethernet, Media Independent Interface, and so on.

DDK—Driver Development Kit. Software development tools that enable developers to create 
device drivers.

Destination Host—The Host that receives the specified domains owned by an Active Host if a 
hardware-initiated switchover takes place on the Active Host.

Domain—A collection of peripheral PCI slots that is a Host’s unit of ownership. PCI-to-PCI 
bridges can populate these slots, so the domain is generally a collection of PCI trees. 

Drone mode (also known as Isolated mode)—A Host operating in Drone mode is isolated from 
the backplane.

Failover—A type of switchover that is initiated by the Active Host, resulting from a failure that 
leaves the domain in an unknown state and requires a bus segment reset to recover.

Fault-tolerant system—Hardware and software designed with redundancy to achieve very high 
availability. Typically this is a high-cost High Availability solution.
12 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Introduction
Handover—A type of switchover that is initiated by the Active Host, resulting from a software 
command or Baseboard Management Controller detected fault wherein the bus segment is 
quiesced before the transfer of system slot functions.

HA SDK—High Availability Software Development Kit

High-Availability (HA) system—Constructed from standard components with redundancy to 
reduce the probability of interruptions. Typically, “five nines” of availability are expected 
(99.999%).

Host—A Host is a CPU board that is capable of providing system slot functions and System Host 
functions to the peripherals in a CompactPCI backplane. This can include any number of bus 
segments.

Hot Pluggable—Hot pluggable in the context of this document refers to the driver model used by 
devices that reside on the backplane that allows for asynchronous driver suspension and 
resumption.

Hot Swap—The term Hot Swap refers to the ability of the hardware and software to work in 
conjunction to support the insertion and removal of peripheral boards without requiring the chassis 
to be powered-off during the operation.

Hot Switchover—A hot switchover refers to the state of the bus segment that is being inherited by 
a newly Active Host. On a hot switchover bus ownership is transitioned and upon unmasking of 
backplane interrupts, and enabling of grants, the bus is allowed to operate without any recovery 
actions.

Intelligent Platform Management Interface (IPMI)—A two-wire electrical bus through which 
system- and power-management-related chips can communicate with the rest of the system.

Management Controller—System Management Controller. This may be a Baseboard 
Management Controller (BMC), a Satellite Management Controller (SMC) or a Dual Domain 
Controller.

Mode Change—A mode change is a change in Host domain ownership characteristics, 
specifically, when Hosts change between Active/Active, Active/Standby, or Cluster modes. A 
mode change can only occur when all operating Hosts agree through negotiation to change modes.

Owner Mode—A Host operating in Owner mode owns one or more domains. At any given 
moment of time, one domain can be owned by no more than one Host. If a Host owns the domain, 
software on the Host has access to PCI devices in (or behind) the PCI slots of the domain.

Redundant Host (RH) system—Two or more Hosts that control one or more domains. At any 
given instant, no more than one Host can own one domain. If a Host owns the domain, software on 
the Host has access to PCI devices in (or behind) the PCI slots of the domain.

Redundant System Slot (RSS) board—Any CompactPCI board that meets the RSS bus interface 
requirements in the CompactPCI Hot Swap Infrastructure Interface Specification, PICMG 2.12. 
This includes CPU boards and bridge mezzanine boards.

Segment A Interface—The CompactPCI bus segment interface on the base CPU board.

Segment B Interface—The CompactPCI bus segment interface on the bridge mezzanine.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  13



Introduction
Split Mode—Split Mode is a term that refers to a system operating with multiple system master 
Host boards that each own a single bus segment. Split Mode may refer to either Active/Active or 
cluster modes. In an Active/Active either of two Hosts can inherit the other Host’s bus segment. In 
cluster mode each Host’s bus segment is locked to that Host and ownership cannot be transferred to 
the other Host.

Standby Host (also known as the standby system master)—System board in a High Availability 
system that is currently operating in Drone Mode and therefore not the Active Host. The Standby 
Host has no visibility of the devices on the other side of the PCI-to-PCI bridge. 

Switchover—Changing ownership of a domain from one Host to another.

System Host functions—Central functions provided to a CompactPCI bus segment including hot 
swap event response, bus enumeration, and interrupt service. The system slot board provides these 
functions.

System slot—Slot occupied by a System Master that performs arbitration for secondary bus 
masters, responds to interrupts from peripheral boards, and drives a clock signal to each backplane 
slot.

Takeover—A type of switchover that is initiated by the Standby Host in a High Availability 
system. A takeover may be hostile or friendly. 

Warm Switchover—A warm switchover refers to the state of the domain that is being inherited by 
the Host taking ownership. On a warm switchover domain ownership is transitioned and, before 
any bus actions or operations are allowed to occur, the bus segment is toggled through reset. This in 
effect resets all the devices that reside in the reset domain.

2.2 High Availability Hardware Approach

In an RH system the Redundant System Slot (RSS) subsystem is spread across several building 
blocks. These include:

• Processor boards (such as the Intel® NetStructure™ ZT 5524 System Master Processor Board)

• Bridge mezzanine (such as the Intel® NetStructure™ ZT 4901 Mezzanine Expansion Card)

• Backplane (such as the Intel® NetStructure™ ZT 4103 Redundant Host Backplane)

Other building blocks and subsystems may be required to support the RSS subsystem. These 
include:

• System management

• Storage

• Power distribution

• Cooling

• Media

• Packet switching
14 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Introduction
Intel’s RH software runs on system master processor boards with bridge mezzanine cards in a 
PICMG 2.13 compliant RSS backplane to provide redundant system master functionality. This 
allows the failover of control of redundant PCI buses. It provides faster hardware that is PICMG 
2.9 and 2.16 compliant. The system makes use of the IPMI infrastructure for fault detection and 
correction. 

2.2.1 Processor Boards

The Host processor board is a CompactPCI system master processor board, such as the ZT 5524, 
that can operate in Owner Mode or Drone Mode, and may operate in Peripheral Mode. 
Additionally, it must be able to gracefully transition between modes by coordinating with a 
Redundant Host (RH). The processor board must also support hot swap when it is in Drone Mode.

The key elements that allow RSS functionality are shown in Figure 2, “RSS Processor Board Block 
Diagram” on page 16 and are described below.

PCI The PCI interface to the backplane. This may be a PCI-to-PCI bridge like 
the Intel 21154, or some other PCI interface.

Iso/Term CompactPCI termination and isolation. Isolation is required to ensure 
that the PCI interface does not affect the backplane bus segment when 
the board interface is in Drone Mode. Termination is required when the 
board interface is in Owner Mode. The isolation may be integrated into 
the PCI interface device. 

Clk The clock generator for the CompactPCI bus segment when the board 
interface is in Owner Mode. 

CIC The CompactPCI Interface Controller is responsible for coordinating 
switchovers. 

Arb The bus arbiter for the CompactPCI when the board interface is in Owner 
Mode. 

HC The Host Controller provides the software accessible registers for 
control and status of the CIC.

xMC The IPMI Management Controller may operate as a Baseboard 
Management Controller (BMC) or Satellite Management Controller 
(SMC). This device is responsible for detecting faults and notifying the 
CIC so that it may make the appropriate response. Additionally, the xMC 
is responsible for power-on negotiation of bus ownership with a 
redundant board. 
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  15



Introduction
2.2.2 Bridge Mezzanine

The HASDK driver set works in single and dual bus segment configurations. In order for the dual 
bus configuration to be supported a bridge mezzanine must be mounted on the processor board. 

The bridge mezzanine is a board that is physically attached to the base processor board. The 
processor board and bridge mezzanine are stacked such that they occupy two adjacent CompactPCI 
slots. 

Like the base processor board, the bridge mezzanine has a CompactPCI bus segment interface that 
can operate in Owner Mode or Drone Mode. The bus interface mode of the bridge mezzanine is 
independent of the processor board’s mode. 

The bridge mezzanine contains elements that are identical to the base processor board in order to 
create a second CompactPCI interface for connection to a different bus segment, as shown in 
Figure 3, “RSS Host with Bridge Mezzanine Block Diagram” on page 17.

Figure 2. RSS Processor Board Block Diagram

Base CPU Board

CPU/

Chipset xMC

HC

PCI
CIC

Iso/Term Clk. Arb.

Control

Control/Status

CompactPCI J1/J2

Bus Segment A

Interboard

Connector

Xreq
16 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Introduction
2.2.3 Backplane

The RSS system backplane supports two CompactPCI buses accessible by both Redundant Hosts. 
In Active-Standby mode, the active processor board controls the buses (Active Host) and the 
standby processor board is isolated from the backplane (Drone mode). By using Active-Active-
capable processor boards such as the ZT 5524, the system can be configured so that each processor 
board has access to one backplane bus (Cluster mode). The backplane has separate buses for 
active-to-standby processor board communication (COMM) and Host Controller functions. See 
Figure 4, “High-Availability System Backplane Architecture” on page 18 for an example of a 
typical High-Availability backplane. 

Figure 3. RSS Host with Bridge Mezzanine Block Diagram

Base CPU Board

CPU/
Chipset xMC

HC

PCI
CIC

Iso/Term Clk. Arb.

Control

Control/Status

Control/

Status

CompactPCI J1/J2

Bus Segment A

Interboard
Connector

Interboard
Connector

Xreq

Bridge Mezzanine

PCI
CIC

Iso/TermClk.Arb.

Control

CompactPCI J1/J2

Bus Segment B

Xreq
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  17



Introduction
2.3 High-Availability Software Approach

As shown in the Figure 1, “High-Availability CPU Architecture” on page 11, there are three High-
Availability software components:

• Host application

• System Management

• Backplane Device Drivers

2.3.1 Host Application

The host application serves as the central control mechanism for the platform. For a host 
application to function in an RH environment it must be able to relinquish or receive control of the 
system in a controlled manner. Dynamically transitioning of bus segment ownership between 
active and backup requires the application to maintain data synchronization between the 
applications on the redundant Hosts.

Figure 4. High-Availability System Backplane Architecture

2 213 4 5 6 7 8 13 14 18 19 2015 16 171A

1B

Host Processor Board 

Redundant Host Processor Board 

Bridge Mezzanine Board 

Bridge Mezzanine Board 
18 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Introduction
The design of the application should be made as portable as possible. This requires that the design 
be implemented in a modular approach that isolates the system management requirements from the 
host application. This division of responsibilities can be achieved through a layered 
implementation. See Chapter 3, “Host Application Software” for more information.

In addition to taking a modular approach, the application designer should recognize the importance 
of producing a hardened application. A hardened application must at least provide a capable 
logging mechanism that allows for application faults to be reconstructed and corrected. It should 
also adhere to good coding practices such as validating all input parameters and return statuses. A 
more proactive approach is to implement fault recovery mechanisms. This could include the 
capturing of faults and the isolation of faulted application components.

2.3.2 System Management

System management is the mechanism by which system configuration and fault characteristics are 
established, insuring system health is maintained. In the Intel® Redundant Host architecture there 
are extensive sets of APIs that provide the developer with a fine level of control of the platform. 

The API described in Chapter 6, “Redundant Host API” deals with the management of redundant 
hosts that reside in a single chassis. In order to manage such a configuration, a number of function 
calls are required so that predetermined default actions can be prescribed depending on the desired 
switchover strategy. The required functions are based on the Hot Swap Infrastructure Interface 
Specification, PICMG 2.12, specifically in the Redundant Host API chapter. The supplied APIs 
provide the following abilities:

• Enumerate the hosts, domains, and slots in the system

• Get information about devices in slots

• Initiate domain switchovers among hosts

• Enable and disable notifications regarding switchover operations

• Specify actions that result from hardware-initiated alarms and control notifications about 
alarms.

Chassis management is achieved using the IPMI infrastructure. The IPMI interface exposes the 
embedded monitoring devices such as temperature and voltage sensors. Currently there is no 
industry standard API for managing IPMI devices, primarily because the devices that are used may 
vary significantly between chassis configurations. Since the drivers supplied for use in the 
Redundant Host architecture are operating system dependant, the interfaces used to access the 
IPMI devices are not necessarily portable between the supported operating systems.

The supplied Hot Swap API provides a mechanism to identify the topology and Hot Swap state 
within a specified chassis. By using this API the system management application is able to identify 
which slots are populated and the power states of the occupying boards. There are additional APIs 
that allow for simulated backplane peripheral insertion and extraction. In addition, this API 
provides for notification of Hot Swap events.

The Slot Control Interface is independent of the Redundant Host driver. This separation of 
functionality is designed to allow for slot control functionality in a chassis without full hot swap or 
redundant host capabilities. The Slot Control API is based on the PICMG 2.12 High Availability 
Slot Control Interface functions. It interacts with the Slot Control Driver to create IPMI messages 
through which a finer granularity of board control can be achieved then was found in previous 
generations of High Availability systems. Using the Slot Control API the application can retrieve 
information regarding “Board Present Detection”, “Board Healthy”, and “Board Reset” capability. 
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  19



Introduction
2.3.3 Backplane Device Drivers

Backplane device drivers are a critical component of High Availability system. The drivers need to 
be robust in their operations as well as to be dynamic given the “Stated” nature of a Hot Swap 
architecture.

The ability of a driver to remain loaded and initialized even though the Host may not have visibility 
to the device is critical when Host ownership transfer can occur almost instantaneously. In order for 
a driver to function in this environment the designer should implement the driver in a stated 
fashion. This means that the driver must be able to be started and stopped asynchronously.

Another important factor when designing a driver that will function in a Redundant Host 
environment is the ability to maintain synchronization between redundant device drivers that reside 
on separate Hosts. In order to provide an easily implemented communication mechanism the Intel 
HASDK provides a single callback definition and API call. This driver communication mechanism 
enables not only a simple interface, but because of its simplicity, a very robust synchronization 
tool.

The Intel Redundant Host architecture also provides support for those devices that require a 
domain reset. The domain can be reset by using either of the following methods:

• The default IPMI settings. These can be configured using the IPMI API, described in 
Chapter 8, “IPMI API.”

• The Redundant Host API using either the Switchover or Slot Information APIs, as described in 
Chapter 5, Chapter 6, “Redundant Host API.”

For more information regarding the Hot Swap and Redundant Host CompactPCI device driver 
design model see Chapter 5, “High Availability CompactPCI Device Drivers.” Redundant Host 
APIs and callback definitions for specific operating systems are in Appendix C, “HSK Device 
Driver Interface for VxWorks* 5.4,” and Appendix D, “RH Device Driver Interface for Linux* 
2.4.”
20 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Host Application Software 3

Through thoughtful design and the use of a layered development approach, an application can be 
developed that meets the implied robustness of a highly available system and also is a portable 
entity. In addition to covering the details of developing an application that runs in a High 
Availability environment, this chapter provides a foundation for understanding the issues that a 
developer needs to be aware of when deploying in a multi-host architecture.

3.1 Goals of the Host Application

Design goals that should be achieved for your application to perform successfully in a High 
Availability environment are:

• Serviceability

• Portability

• Redundancy

3.1.1 Serviceability

The first and probably most important attribute of an application is to maintain a constant level of 
service. This ability to provide a minimum level of functionality is referred to as serviceability. The 
concept of serviceability should not be restricted to performing the required functionality within 
the domain of a single Host, but should be considered at a much higher level. An application is the 
service or set of services that need to be performed within the domain of a platform. By domain we 
are referring to the system that is providing the service. The system could be as simple as a system 
master processor board, but more than likely the system will contain peripheral boards, chassis 
management modules, various system sensors, and in the case of a redundant host architecture, 
multiple system master boards.

3.1.2 Portability

Another goal is to design and implement a portable Host application. Some of the largest 
investments that a provider makes are in the areas of application development and maintenance. In 
order to preserve as much of the initial investment as possible, it is important to design the 
application so that it is separated from specific platform components that may be enhanced or 
changed. Portability can be achieved by isolating the application as much as possible from the 
system management responsibilities required for High Availability. This separation of functionality 
can be achieved through a combination of modular design and a layered software approach. This 
topic is covered in more detail in Section 3.2, “Division of Labor” on page 22.

3.1.3 Redundancy

In order to achieve a high level of serviceability within a Redundant Host environment, it is 
assumed that the host application has the ability to failover to another application. This backup 
application should be a mirrored copy of the original application that will likely reside on another 
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  21



Host Application Software
System Host in the same chassis. In order for a host application to be capable of maintaining the 
system’s serviceability, these redundant applications should maintain some level of 
synchronization. The level of synchronization and the level of sophistication of the system’s 
peripherals determine the failover characteristics of your system. Synchronization issues, in 
addition to other implementation concerns, are covered in the Section 3.3, “Development Issues” 
on page 23.

3.2 Division of Labor

Historically, embedded application developers have integrated the management of the system with 
the host application. This tight integration meant it was unlikely that much of the host application 
could be ported when the application was rehosted on a new platform. This topic presents a 
possible architecture that allows the host application to remain aware of system performance and 
degradation while maintaining a loose coupling with the system management aspects of the 
architecture.

One of the keys to portability in application design is to maintain a modular design. This goal is 
often complicated by routines used for system management that place particular requirements upon 
the implementation of the application. One way to reduce the awareness of the application on a 
particular implementation is to take a layered approach to the design of the application. In this way 
you can reduce specific implementation features without unnecessarily isolating the application 
from the underlying performance of the system. See the “Layered Host Application Diagram” 
below.

Figure 5. Layered Host Application Diagram

System Management
Modules

Platform Interface

Host Application
22 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Host Application Software
The diagram shows that the host application’s need to understand the particular implementation 
aspects of the platform’s system management is reduced by placing an intermediary layer that in 
effect interfaces and translates only the system management information that the host application 
cares about. The host application should usually care about only those issues that would degrade 
performance or cease operations, such as: 

• Access to peripherals

• System performance

• Integrity of operations

The platform interface can be more than a wrapper around exposed system functionality: It could 
act as a filter with a level of intelligence. The platform interface could be designed so that the 
module could monitor system health and take proactive actions like initiating a handover, when 
circumstances dictate. The platform interface might also be responsible for translating system-
particular messages and alerts into a normalized format that the application understands. The 
events that a host application most likely requires notification of are:

• Switchover situations

• Warnings of system failures

• The availability of system resources

All these events should be handled first by the platform interface and relayed to the host 
application only when they might impede performance.

3.3 Development Issues

There are several issues that an application developer of a High Availability system architecture 
must be aware of:

• Redundancy

• Graceful switchover 

• Hardened applications

• Code modularity

3.3.1 Redundancy

Redundancy, or at least the awareness of redundancy, must be designed into the application. This 
requires that data be constantly normalized. The term data could mean anything from state 
information to an entire database. The ultimate goal is to have a system that appropriately responds 
to a switchover while maintaining the integrity of all system data. 

The trade-off for maintaining a high level of synchronization is required overhead. The amount of 
bandwidth required for data normalization can be effectively reduced by:

• Utilizing intelligent peripherals that internally maintain state

• Creating innovative methods of database sharing through shared RAID architectures 

These are just examples of data synchronization; there are numerous ways to share data that are 
dependant on your actual implementation.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  23



Host Application Software
3.3.2 Graceful Switchover

In a Redundant Host environment a graceful switchover is only secondary in importance to data 
integrity. An effective mechanism is required in order for an application to seamlessly pick up the 
functionality of a faulted application. The Intel Redundant Host environment has an infrastructure 
in place to help facilitate such control transitions. This architecture supplies: 

• Multiple communication paths

• A capable fault detection interface

• Embedded firmware that can be configured for multiple failover scenarios

In addition to providing a fine level of granularity on the type of switchovers provided, this 
platform also exposes these switchover events to an application or platform interface module so 
that the software can act upon the events appropriately.

3.3.3 Hardened Applications

In almost all environments it is important to develop applications in a hardened manner, but in a 
highly available embedded environment it is especially important. The definition of the term 
“Hardened” may vary depending on the type of system that is being developed and the accessibility 
of various system level software components. In the context of this Redundant Host architecture, 
the term hardened refers to verifying that all function return codes are appropriately handled and 
dispatched with accordingly, function parameters are validated, and that the system maintains a 
logging mechanism sufficient to monitor system performance and to assist in diagnosing fault 
conditions when present. Code hardening should be part of any standard development effort, but a 
disciplined approach to code hardening must be maintained in an HA environment.

3.3.4 Code Modularity

Code modularity is also considered a common implementation characteristic, but it is often 
overlooked during the implementation portion of a project. In order to achieve some level of 
application portability the designers need to make the conscience effort to move away from typical 
embedded monolithic designs. 

One approach to modular design in an HA architecture is to decouple the services provided by the 
system from the entities responsible for system management. Since system management is heavily 
dependant on the hardware configuration of the host platform, the implementation of a platform 
interface module helps to abstract the host application away from the platform on which it resides. 
The Platform Interface Module achieves platform abstraction by handling most hardware level 
monitoring and exposing platform specific interfaces only through non-proprietary APIs. One of 
the advantages of the Intel High Availability Redundant Host System is the reliance on industry-
standard, non-proprietary interfaces. These interfaces allow for future portability of the developed 
code base.
24 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



System Management 4

System Management is an all-encompassing term whose definition can vary drastically depending 
on the type of system that is being developed. System Management can indicate anything from 
system configuration all the way to active reporting, proactive fault remediation, and 
comprehensive system security. In a relatively closed system with limited access to external 
interaction, system management could be limited to chassis management, event logging, and 
resource management. In systems that require more sophisticated external interface and a finer 
granularity of control, system management mechanisms can provide a myriad of APIs and system 
services for administering a system. 

The intent of this section is to give a developer an overview of what application programming 
interfaces are supplied by the High Availability SDK (HASDK). 

The HASDK provides System Management capable APIs. The APIs enable Redundant Host 
configuration and administration, IPMI infrastructure communication and administration, Hot 
Swap device detection and management, Slot Control for control and access of backplane slot 
attributes.

Most of the details for creating and administering a Telco based solution are beyond the scope of 
this document. 

4.1 Redundant Host API

Among these APIs is a PICMG* 2.12 compliant Redundant Host Programming Interface. This 
interface allows a client to perform the following operations:

• Initialize and terminate an instance of this interface

• Enumerate the Hosts, domains and slots in the system

• Get information about devices in slots

• Initiate domain switchovers among Hosts

• Enable and disable notifications regarding switchover operations

• Specify actions that result from hardware-initiated alarms and control 

See Chapter 6, “Redundant Host API,” for more information.

4.1.1 IPMI API

Platform management is a major component of a comprehensive system management architecture. 
Platform management allows for status and event notification of all exposed interfaces such as 
temperature sensors, voltage monitors, and other sensory devices. These status and 
communications capabilities need to be as extensible as possible. 
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  25



System Management
The next-generation, high-availability architecture provides this system management infrastructure 
using IPMI. Through the IPMI API the developer is able to access the status of individual sensors, 
various management controllers, and to configure the system to initiate switchovers based on 
events or threshold excursions. See Chapter 8, “IPMI API,” for details.

4.1.2 Hot Swap API

A critical feature of any system that claims to be Highly Available is the capability to perform 
peripheral insertions and extractions without requiring that the system be powered off. In order to 
provide this functionality a kernel level Hot Swap infrastructure should be integrated into the 
operating system. This infrastructure allows for dynamic resource allocation for peripheral slot 
cards. Given the dynamic nature of a Highly Available platform, the system management needs to 
remain aware of the system’s topology. A PICMG 2.12 compliant Hot Swap API accomplishes 
this. The Hot Swap API includes functions to return the state and population of the CompactPCI 
bus, to simulate unlatching a particular board's hot swap extractor, and to permit software 
connection and disconnection. See Chapter 6, “Redundant Host API,” for more information.

4.1.2.1 Slot Control API

Another part of system management is the ability to control individual peripherals cards. Under 
normal circumstances in which a system is operating properly, little in the way of card control 
needs to be performed. There are events that require actions to be taken to place the peripheral 
cards into a known state. It is the responsibility of the slot control driver and the accompanying API 
to provide this quiescing and peripheral shutdown functionality. This API provides control at the 
card level, as well as providing several functions that allow reporting the status of the peripheral 
card’s operational state. See Chapter 9, “Slot Control API,” for more information.

4.2 Baseboard Management Controller Firmware 
Enhancements

The HASDK takes advantage of the system master processor board’s capability for board 
management provided through its resident Baseboard Management Controller (BMC). The 
standard capabilities of the BMC provide a high level of system management. To support RH 
functionality, some extensions for bus segment control are added to IPMI v1.5 specification 
support. These extensions include:

• Fault Configuration

• Isolation Strategies

• CompactPCI Interface Controller interaction

• Non-Volatile Storage of RH Parameters

• IPMI RH Channel Commands

4.2.1 Fault Configuration

The BMC handles the following event triggering mechanisms for each entry in its Sensor Data 
Record (SDR):

• Upper/Lower non-critical threshold
26 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



System Management
• Upper/Lower critical threshold

• Upper/Lower non-recoverable threshold

Each range can be set independently for each sensor and the ranges can overlap. This area of 
configuration is used only to trigger events. These events appear in the System Event Log. 
Platform Event Filtering (PEF) determines the actions that occur as a result of these events. Only 
the Upper/Lower non-recoverable threshold is typically configured using the PEF to cause a 
hardware-initiated takeover to occur.

4.2.2 Isolation Strategies

The BMC handles the following event actions in its PEF Table:

• Alert

• Power Off

• Reset

• Power Cycle

• Diagnostic Interrupt (NMI)

These options can be set independently for each event. 

Support for a Handover action allows the takeover / handover process to occur from the BMC. This 
action triggers the CompactPCI Interface Controller (CIC) to initiate the handover sequence. A 
virtual RH channel facilitates this switchover request.

Table 1. Channel Definitions for ZT 5524

Channel # Description

0x0 IPMB 0

0x1 EMP

0x2 ICMB

0x3 PCI

0x4 SMM

0x5 RH Virtual Channel

0x 6 LAN Interface 2

0x 7 LAN Interface 1

0x 8 IPMB 1

0x 9 RESERVED

0xA RESERVED

0xB RESERVED

0xC Internal

0xD RESERVED

0xE Self

0xF SMS
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  27



System Management
The RH channel acts as a virtual channel that can respond to Alert Actions. This channel supports 
IPMI commands like Alert Immediate:

• In the Alert Policy Table: Create an entry with a unique policy number, channel specified as 
RH, destination specified as RH_CHAN_SET_ALL_MC_FD. 

• In the Platform Event Filter Table: Create an entry with the Alert action selected, Alert Policy 
Number defined as above, and the data mask specified based on the sensor thresholds to be 
triggered.

4.2.3 IPMI RH Channel Commands

The following RH commands are present in the ZT 5524 processor board BMC firmware. These 
are accessible only by sending the selected command/net function to the RH channel (0x05)

4.2.3.1 RH Channel Enabled

This IPMI command returns whether the board has RH features enabled or not. Conditions for non-
RH operation are: No IOX presence or the board is in a non-RH capable slot. Standard IPMI 
completion codes are returned.

IPMI Command: RH_CHAN_ENABLED (0x00)

Net Function: INTEL_RH_SPECIFIC_REQUEST (0x36)

ByteData Fields 

4.2.3.2 RH Channel Get RH BMC Address

This command gets the IPMB 1 address of the redundant host’s BMC. Standard IPMI completion 
codes are returned.
IPMI Command: RH_CHAN_GET_RH_BMC_ADDR (0x05)

Net Function: INTEL_RH_SPECIFIC_REQUEST (0x36)

ByteData Fields 

Table 2. RH Channel Alert Destinations

Destination # Description

0x00 RESERVED

0x01 RH_CHAN_SET_ALL_MC_FD (Sets CIC Fault Detection Lines)

0x02 RH_CHAN_CLEAR_ALL_MC_FD (Clears CIC Fault Detection Lines)

Request - -

Response 1 Completion Code

2 1h = RSS enabled

0h = RSS disabled
28 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



System Management
Request - -

Response 1 Completion Code

2 RH BMC Address
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  29



System Management
This page intentionally left blank.
30 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



High Availability CompactPCI Device 
Drivers 5

This chapter describes the characteristics of highly available software drivers for CompactPCI 
peripherals in a Redundant Host environment.

To fully utilize the High Availability SDK, you must write a peripheral driver that can be started 
and stopped repeatedly and that can be loaded and initialized even when the device it is servicing is 
not physically visible to the operating system. 

5.1 Device Driver Design

Historically, device drivers are relatively simple in their high level requirements. The operating 
system detects a hardware component and loads a module of software that allows software-
initiated interaction with the hardware. It was assumed that the hardware configuration would not 
change over the life of the system, or at the least would remain static between power cycles. 

With the advent of CompactPCI these assumptions can no longer be guaranteed. One of the 
primary advantages of a CompactPCI architecture is the ability to perform peripheral insertions 
and extractions without requiring the chassis to be powered down. This system attribute is referred 
to as Hot Swap. Because of this, system configurations can no longer be assumed to be static. This 
dynamic configuration capability places new requirements on the operating system and the Hot 
Swappable device drivers.

The operating system kernel now needs to be able to dynamically handle system resources, in 
allocation and resource collections. Intel supplies a Hot Swap manager for operating systems 
supported by the Intel® High Availability architecture. This manager is a component of the 
operating system kernel that manages dynamic bus and resource allocations. Since this is a kernel-
level function that is transparent to the developer, this document will not describe the details of this 
module.

In order for a device driver to function in a Hot Swap environment, the driver is required to 
implement what is known as a Stated Driver Model. A stated device driver is constructed in a 
manner that allows it to gracefully transition between multiple operational modes. 

The specifics of stated device driver design vary for each operating system supported. This is due 
to the Hot Swap implementation that is used by each operating system. If an operating system 
natively supports Hot Swap events then the driver implementation will leverage the supported 
driver model. 

This is the case with Linux* kernel version 2.4. Refer to Appendix D, “RH Device Driver Interface 
for Linux* 2.4” for more information.

VxWorks* version 5.4 does not natively support a stated driver model, so Intel has provided 
enhancements to this operating system. The specifics of the VxWorks CompactPCI driver model 
can be found in Appendix C, “HSK Device Driver Interface for VxWorks* 5.4.”
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  31



High Availability CompactPCI Device Drivers
5.1.1 Device Driver States

There are varying degrees of functionality that are dependent on power modes, operating system 
Hot Swap implementations, and device characteristics. But for a device driver to function in this 
High Availability architecture we can generalize the required driver states down to three distinct 
states.

• Initialization

• Quiesced

• Activation

5.1.1.1 Initialization

During initialization, the driver starts up and is loaded. The driver cannot “talk” directly to the 
hardware devices it is controlling, with the exception of PCI configuration cycles. Intel has 
provided the ability to perform PCI configuration cycles to any backplane devices even if the 
device driver resides on the Standby Host.

5.1.1.2 Quiesced

A quiesced device driver is completely initialized with all internal allocations and instantiations of 
device information completed, ready to perform direct device operations. A device driver waits for 
notification from the Hot Swap Manager via a Start or Resume callback mechanism, indicating that 
the driver is free to access the device directly. The driver must be designed to transition between 
Quiesced and Active states at any time.

5.1.1.3 Activation

Device activation notifies the driver that the system master is in the Active state; direct device 
interaction is permitted. When a device driver receives a Stop or Suspend callback, the driver must 
clean up any device-specific state information and transition to a known or Quiesced state.
32 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



High Availability CompactPCI Device Drivers
5.1.2 Adding High-Availability Functionality

Operating in a Redundant Host architecture places additional responsibilities on device drivers 
beyond those issues required to function in a normal Hot Swap environment. This section covers 
particular issues that a Redundant Host device driver designer needs to be aware of when 
implementing their design.

The Redundant Host architecture leverages the Hot Swap driver interface to enable Ultra-Quick 
switchovers. To do this the Hot Swap Manager views a domain ownership change as a multi-card 
Hot Swap event. When a Host loses ownership of a bus segment its Hot Swap Manager issues a 
stream of stop device messages that attempts to place the backplane devices into a known quiesced 
state. The device drivers on the Destination Host are in a known state. By using the described High 
Availability driver model the Destination Host device drivers are able to assume control in an 
almost instantaneous manner. 

Additional measures need to be taken to protect against inadvertent backplane interrupts and bus-
mastering activities by devices on the segment in question. These additional measures are 
completely transparent operations to the device drivers since the Hot Swap Manager in the kernel 
handles them. All a device driver needs to be concerned with is being able to gracefully suspend 
and resume interaction with the device or devices it controls.

Each operating system that supports Hot Swap does so in a unique way. The specific function 
callbacks, number of callbacks, and level of control vary between operating system 
implementations. However, all Hot Swap implementations are based on the stated driver model 
described in Section 5.1.1, “Device Driver States” on page 32. The driver states can be classified 
into the following generic functions:

Figure 6. Multi-Stated Driver Flowchart

 Driver
Not Loaded

Device
Suspended

Device
Running

      StopDevice            StartDevice

AddDevice

RemoveDevice /
SurpriseRemoval

RemoveDevice /
SurpriseRemoval

Device Not
Present

Find
Suitable
Driver

Device
Removed
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  33



High Availability CompactPCI Device Drivers
• Add Device

• Resume Operations

• Suspend Operations

• Remove Device 

5.1.2.1 Add Device 

Add Device is the device driver call made by the Hot Swap Manager either when an asserted 
ENUM signal is detected or during the kernel load time. The Add Device callback execution 
indicates to a device driver that an instance of a device that the driver can control has been 
detected. The driver should perform any internal structure initialization, but should not attempt to 
initialize the device. 

This is where device driver design on a Redundant Host architecture capable device branches from 
common device driver practices. Normally during the Add Device callback the driver initializes the 
device. During the Add Device execution in a Redundant Host architecture, the device cannot be 
assumed to be physically visible to the Host making the Add Device call. 

The Intel® Redundant Host architecture supplies a PCI Configuration Space Spoofing mechanism 
that provides the Host with the ability to query the configuration of backplane devices, whether or 
not the devices are physically visible. In this manner a device driver can query the information 
required to allocate the appropriate resources. Any operations that require direct access to the 
backplane device may only occur in the Resume Operations and Suspend Operations callbacks.

5.1.2.2 Resume Operations

The kernel calls the Resume Operations function only when the Host has visibility of the 
CompactPCI backplane device. It is during this operation that the device driver can perform direct 
device accesses. This may entail initializing the device, querying current device status, or simply 
placing the device into a known state. It is normally in the Resume Operations callback that the 
Interrupt Service Routine (ISR) is connected or chained to the appropriate interrupt signal. 

As stated earlier, to the driver should not attempt to access a device unless the Host has physical 
visibility to the device. If an access is attempted to a non-owned or non-visible CompactPCI device 
then a system crash may occur. 

This also applies to kernel accesses to non-visible devices. An example of this is if the kernel 
detects an interrupt and executes the ISRs attached to what could be a shared interrupt signal. The 
device driver normally does this by querying the controlled device. If the device is not visible to the 
querying Host, then a system crash may occur. 

Two ways to help protect against this situation are:

1. Connect the device driver’s ISR only when the Resume Operation callback is executed

2. Make a sanity check at the top of the ISR to see if the device is visible to the executing Host. 

The Intel HA SDK provides a kernel level query function that can be used by device drivers to 
determine if the Host controls the bus segment on which the CompactPCI device resides.
34 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



High Availability CompactPCI Device Drivers
5.1.2.3 Suspend Operations

The counterpart to the Resume Operation callback is the Suspend Operation. The kernel calls the 
Suspend Operation callback function for each device for which a Host is losing visibility. It cannot 
be assumed that the driver retains visibility to the backplane device during the Suspend Operation 
execution. The Suspend Operation should first disconnect the device’s interrupt service routine. 
The driver should then do whatever normalizing of internal device structures is required so that, if 
necessary, the driver will be in a position to inherit control of the device again.

5.1.2.4 Remove Device

The Remove Device function is called when a CompactPCI backplane device is extracted from the 
chassis. It is in this routine that all structures that were created and/or initialized during the Add 
Device call are deallocated. All internal cleanup of the extracted device needs to occur with the 
awareness that the driver cannot assume visibility to the device. This is not a major issue since the 
Hot Swap event detected and ENUM remediation occurs in the Hot Swap Manager, which is 
transparent to the device driver.

5.1.2.5 Driver Synchronization

Redundant Host aware device drivers might need to handle driver synchronization. In a Redundant 
Host architecture two device drivers are assigned to control a single device. Device control may be 
transitioned from one Host to the other at any moment so the device driver needs to be dynamic in 
its design. 

Part of this dynamic state capability is made more manageable through inter-Host synchronization. 
In this case the synchronization mechanism is an inter-Host communications channel. The inter-
driver synchronization infrastructure can be used for various synchronization strategies; among 
these are data mirroring, check pointing, and device heart beating.

The Intel HA SDK has defined a Receive Message callback and a Send Message API routine. The 
kernel executes the Receive Message callback whenever a message is destined to a backplane 
device driver from the reciprocating driver on the opposite Host. The contexts of these 
synchronization messages are transparent to both the sending and receiving Hosts. The messages 
themselves are decoded and used internally by the receiving device drivers. There is a possibility 
that the message received is no longer valid for the following reasons: 

• The system masters are not run in lockstep and do not access shared memory 

• A delay can occur between the time a message is sent and the time the device driver is able to 
consume the message 

To minimize this possibility of being out of sync, the drivers should limit themselves to 
synchronizing mostly state or database related information. For example, a device driver may want 
to share the usage of a specific IP address across Redundant Hosts. In this case a driver packages 
up the IP address and uses the Send Message API to transmit the packet to the Redundant Host. 
The Receiving Host decides which device driver is to receive the packet and calls the registered 
Receive Message callback routine. The device driver then decodes the message packet 
appropriately.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  35



High Availability CompactPCI Device Drivers
5.2 Summary

The intent of the HA CompactPCI device driver model is to leverage the native device driver 
infrastructure to supply a robust Hot Swap capability while limiting the non-proprietary device 
driver modifications. In order for a device driver to function effectively in a Redundant Host 
environment the driver should at a minimum implement the Hot Swap device driver infrastructure 
detailed in the following appendices of this manual:

• Appendix C, “HSK Device Driver Interface for VxWorks* 5.4”

• Appendix D, “RH Device Driver Interface for Linux* 2.4”

The specific implementation details vary between the supported operating systems, so choose the 
correct driver model for the operating system for which you are developing. To best leverage the 
Redundant Host capabilities it is recommended that some level of synchronization be implemented 
using the supplied device driver messaging infrastructure.

It is not necessary to implement all the supplied Redundant Host features for backplane device 
drivers to function in a High Availability architecture. There are some device implementations that 
require a device or bus segment to be reset when Host ownership changes. Using either the 
PICMG* 2.12 Redundant Host API or the IPMI API system information extension documented in 
the next chapter allows the bus segment to automatically reset the specified domain after the new 
Host has inherited the bus segment. To use these functions, see the Redundant Host switchover and 
slot information related APIs and the IPMI API for default Host activities.
36 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API 6

6.1 Intel-Specific APIs

6.1.1 RhSetHostName 

Prototype:

RH_API_DEF HSI_STATUS
RhSetHostName(
 IN RH_HANDLE Handle,
 IN uint32 Host,
 IN char HostName[ ])

Arguments:

Handle - The handle of the current session

Host - The host number

HostName - The character buffer where the host name is stored as a 0-terminated 
character string

Return Value:

HSI_STATUS_SUCCESS - returned in the case of success

RH_INVALID_HANDLE - invalid session handle

HSI_STATUS_NOT_SUPPORTED - returned if this function is not supported by the infrastructure

Other HSI_STATUS values - if errors occurred during execution of this function such as 
nonexistent host

Synopsis:

This function sets the symbolic name of the specified host; this should be some kind of network 
name (for example, NETBIOS name or TCP/IP host name) that can be used to establish a network 
connection to that host. 

6.1.1.1 RhGetHwDestinationHostAndReset

Prototype:

HSI_STATUS 
RhGetHwDestinationHostAndReset(
 IN RH_HANDLE Handle,

IN uint32 SourceHost,
 IN uint32 Domain,

OUT uint32 *pDestinationHost, 
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  37



Redundant Host API
OUT BOOL*pbReset );

Arguments:

Handle – the handle of the current session

SourceHost - the number of the source host

Domain – the domain number

pDestinationHost pointer to the variable receives the number of the host that should own 
the specified domain if the source host fails and hardware-initiated 
switchover takes place for it

pbReset pointer to the variable receives the state of the flag that indicates whether 
the specified destination host will perform a reset if the host receives 
control of a segment

Return Value:

HSI_STATUS_SUCCESS  
returned in the case of success

HSI_STATUS_INVALID_PARAMETER 
invalid session handle or the specified domain does not exist

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values 
returned if other errors occurred during execution of this function

Synopsis:

This function gets the destination host that owns the specified domain and the reset flag value if a 
hardware-initiated switchover takes place due to the failure of the source host. 

6.2 Redundant Host PICMG* 2.12 APIs

This chapter describes a supplementary API for domain management and switchover from the 
application level.

The interface described in this section is implemented as a set of functions exported to an 
application.

These functions allow the client to perform the following operations:

• Initialize and terminate an instance of this interface

• Enumerate the hosts, domains and slots in the system

• Get information about devices in slots

• Initiate domain switchovers among hosts

• Enable and disable notifications regarding switchover operations

• Specify actions that result from hardware-initiated alarms and control notifications about 
alarms
38 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
The following topics specify each of the interface functions.

6.2.1 Definitions and Types

The following definitions are provided for terms used in the remaining topics of this chapter.

RH (Redundant Host) System. An RH system consists of two or more hosts and one or more 
domains. An ownership relationship is defined between hosts and domains: hosts own domains. At 
any given moment of time, no more than one host can own one domain. If a host owns the domain, 
software on the host has access to PCI devices in (or behind) the PCI slots of the domain.

RH (Redundant Host) Infrastructure. An RH Infrastructure is an implementation of the Redundant 
Host PICMG 2.12 APIs for a specific RH System. It provides the Redundant Host API defined in 
this topic to applications. Multiple RH Systems of the same type may be serviced by a single 
infrastructure.

Domain. A Domain is a specific collection of peripheral PCI slots whose ownership can be 
transferred as a group among system hosts. PCI-PCI bridges can populate these slots. Therefore, a 
domain is generally a collection of PCI trees (a forest). Domains in the system are identified by 32-
bit arbitrary quantities – domain numbers. The number of domains in the system and their domain 
numbers are assumed static during system operation.

Host. A Host is an active entity in the system that can run software that uses this API. Hosts in the 
system are identified by 32-bit arbitrary quantities – host numbers. The number of hosts in the 
system and their host numbers are assumed static during the system operation. The host number 
RH_NO_DESTINATION_HOST means “no host” and is used, for example, to say that no host 
owns the specified domain.

Domain parent bridge. A PCI-PCI bridge is called the parent for a domain if all slots behind that 
bridge belong to that domain and all slots of the domain are behind that bridge.

Domain slot path. The slot path for a PCI device is the sequence of device/function numbers from 
this device up the PCI tree to its root through the sequence of PCI-to-PCI bridges. Usually (but not 
necessarily) each domain has a domain parent bridge. When a host owns the domain, the slot path 
of the domain parent bridge is the domain slot path with respect to the host. Domain slot path may 
be defined with respect to a host even if that host does not own the domain, provided that the 
domain is guaranteed to have the same slot path each time it is switched over to that host.

Switchover. Switchover is changing ownership of a domain from one host to another.

Destination Host. This is the host that receives the specified domains owned by a particular host if 
a hardware-initiated switchover takes place on the owning host.

Available Host. A host is available if it can own domains and communicate with the rest of the RH 
system. A host is unavailable, for example, if it is switched off or is in some special mode in which 
it is isolated from the rest of the RH system.

Owning Host. The host that currently owns a domain.

Current Host. The host on which the specific API call has been made.

Root Bus. The root bus number of the PCI tree this slot belongs to. This value is 0 for the first or a 
single PCI tree. For additional PCI trees, this value is implementation-dependent, but is guaranteed 
to be non-zero.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  39



Redundant Host API
RH Instance ID. A host can be a member of several RH systems simultaneously, similar to multi-
homed hosts in networking. In that case, the application can use the Redundant Host API from 
several RH infrastructures. To select a specific RH system, the application uses the RH Instance ID 
when obtaining the handle to the RH system via RhOpen. RH Instance ID is an implementation-
defined character string. To allow potential coexistence of multiple RH infrastructures on the same 
host, the RH Instance ID should consist of the RH infrastructure identifier and the identifier of a 
specific instance of the RH system (if multiple RH System instances are serviced by a single 
infrastructure).

The C definition of the associated types used by this interface is given below:
typedef enum {
 INACTIVE,
 DISCONNECTED,
 DISCONNECTING,
 CONNECTED,
 CONNECTING } RH_DOMAIN_SWC_STATE;

typedef enum {
 MINOR_ALARM,
 MAJOR_ALARM,
 CRITICAL_ALARM } RH_ALARM_SEVERITY;

typedef enum {
 ACTION_IGNORE = 0,
 ACTION_NOTIFY = 1,

ACTION_SWITCHOVER = 2,
 ACTION_RESTART = 4 } RH_ALARM_ACTION;

typedef enum {
 NOTIFICATION_DOMAIN_STATE_CHANGE,
 NOTIFICATION_SWITCHOVER,
 NOTIFICATION_SWITCHOVER_REQUEST,
 NOTIFICATION_UNSAFE_SWITCHOVER,
 NOTIFICATION_ALARM } RH_NOTIFICATION_TYPE;

typedef enum {
 FULLY_COOPERATIVE,
 PARTIALLY_COOPERATIVE,
 FORCED,
 HOSTILE,
 HARDWARE_INITIATED } RH_SWITCHOVER_TYPE;

typedef struct PHYSICAL_SLOT_ID_STRUCT {
 uint32 ShelfID;
 uint32 SlotID;
} PHYSICAL_SLOT_ID;

typedef void (*RH_DOMAIN_STATE_CALLBACK) (
 IN uint32 Domain,
 IN RH_DOMAIN_SWC_STATE State,
 IN uint32 RequestingHost,
 IN uint32 DestinationHost,
 IN uint32 Timeout,
 IN BOOLEAN Persist,
 IN void *pContext );
40 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
typedef void (*RH_SLOT_STATE_CALLBACK) (
 IN uint32 Domain,
 IN PHYSICAL_SLOT_ID Slot,
 IN RH_DOMAIN_SWC_STATE State,
 IN void *pContext );

typedef void (*RH_SWITCHOVER_CALLBACK) (
 IN uint32 Host,
 IN uint32 Domain,
 IN void *pContext );

typedef BOOLEAN (*RH_SWITCHOVER_REQUEST_CALLBACK) (
 IN uint32 RequestingHost,
 IN uint32 DestinationHost,
 IN uint32 Domain,
 IN void *pContext );

 typedef enum {
 RESET_REQUIRED,
 RESET_NOT_REQUIRED,
 UNKNOWN } RH_SLOT_NEEDS_RESET;

typedef struct RH_SLOT_DESCRIPTOR_STRUCT {
 uint32 Size;
 PHYSICAL_SLOT_ID PhysicalSlot;
 uint8 PhysSlotDepth;
 uint32 OwningHost;
 uint16 BusNumber;
 uint8 DeviceNumber;
 uint8 FunctionNumber;
 uint16 VendorID;
 uint16 DeviceID;
 uint16 SubsystemVendorID;
 uint16 SubsystemID;
 uint8 RevisionID;
 uint8 BaseClass;
 uint8 SubClass;
 uint8 ProgIf;
 uint8 HeaderType;
 RH_SLOT_NEEDS_RESET NeedsReset;

uint16 RootBus;
 char SlotPath[1];
} RH_SLOT_DESCRIPTOR, *PRH_SLOT_DESCRIPTOR;

typedef void (*RH_UNSAFE_SWITCHOVER_CALLBACK) (
 IN uint32 Domain,
 IN RH_SWITCHOVER_TYPE SwitchoverType,
 IN BOOLEAN SlotResetSupported,
 IN uint32 UnsafeSlotCount,
 IN OUT RH_SLOT_DESCRIPTOR *pUnsafeSlotDescriptors,
 IN void *pContext );

typedef void (*RH_ALARM_CALLBACK) (
 IN uint32 Host,
 IN RH_ALARM_SEVERITY AlarmType,
 IN void *pContext );
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  41



Redundant Host API
typedef void * RH_HANDLE;

6.2.2 Initialization/Termination

6.2.2.1 RhEnumerateInstances

Prototype:

HSI_STATUS 
RhEnumerateInstances(

OUT char *pInstanceID,
IN uint32 InstanceIDLength,
OUT uint32 *pActualSize );

Arguments:

pInstanceID - pointer to the character buffer where the list of RH Instance IDs are 
stored as a sequence of null-terminated character strings, terminated by 
two consecutive null characters

InstanceIDLength the size of the buffer; if this size is too small for the output, this function 
fails. 

pActualSize - this variable receives the actual size of the returned list of RH Instance 
IDs, in characters, including the terminating two null characters. In the 
case of the error code HSI_STATUS_INSUFFICIENT_BUFFER 
returned, this is the minimal required size of the buffer.

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_NO_ DATA_DETECTED
no known RH systems exist for the current host 

HSI_STATUS_INSUFFICIENT_BUFFER 
returned if the buffer pInstanceID is too small to store the list of RH 
Instance IDs

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported on the current host

Other, implementation-defined HSI_STATUS values 
returned if other errors occurred during execution of this function

Synopsis:

This function can be used to enumerate existing RH Systems on the current host, before doing an 
actual RhOpen call. The list of RH Instance IDs for RH Systems in which the current host 
participates is stored in the output buffer. Each RH instance ID in the list is a null-terminated 
character string that designates one RH system and can be used as a parameter in a subsequent call 
to RhOpen to specify the RH system that the application wants to work with. RH Instance IDs are 
stored in the buffer sequentially, separated by one null character. Two consecutive null characters 
designate the end of the list.
42 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
An RH infrastructure that implements this function shall return the list of RH Instance IDs only for 
those RH Systems that it services. 

If multiple RH infrastructures are present on the current host, an intermediate layer of functionality 
between the application and infrastructures may be defined, that implements this function. If this is 
the case, that intermediate layer should consolidate together the lists of RH Instance IDs returned 
by separate RH infrastructures and present the consolidated list to the application as the result of 
the call to RhEnumerateInstances. The intermediate layer may change the RH Instance IDs 
returned by separate infrastructures, qualifying them with textual identifiers of the corresponding 
infrastructures.

6.2.2.2 RhOpen

Prototype:

HSI_STATUS 
RhOpen( 

IN char *InstanceId OPTIONAL, 
OUT RH_HANDLE *pHandle );

Arguments:

InstanceId - an RH Instance ID that chooses a specific RH system instance in the case 
where the calling host is attached to more than one RH system. This is 
an implementation-defined string. This parameter can be omitted 
(specified as NULL). In that case, the caller will be using the RH system, 
selected by default (defined by the first RH Instance ID, returned by 
RhEnumerateInstances).

pHandle – pointer to the variable that holds the connection handle to the 
infrastructure of type RH_HANDLE. This type is generally opaque, but 
is typedef’ed to the handle type for the target OS.

Return Value:

HSI_STATUS_SUCCESS
returned in the case of success

HSI_STATUS_INVALID_PARAMETER 
invalid or unrecognized RH Instance ID

HSI_STATUS_NOT_SUPPORTED -
if the specified RH system is not available

Other, implementation-defined HSI_STATUS values 
returned if other errors occurred during execution of this function

Synopsis:

This function initializes the connection between the application program and the RH infrastructure. 
It should be called in the beginning to initialize communication between the application and the 
infrastructure. This function creates a handle to the RH system and returns it to the application 
program. This handle is to be used in subsequent requests. 
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  43



Redundant Host API
The current host may be attached to several RH systems. In that case, the parameter Instance ID 
should be used to specify the RH system that the application wants to work with. Specifying NULL 
as the value of the parameter InstanceID chooses the default RH system. If the function 
RhEnumerateInstances is supported, the default RH system shall be the one designated by the first 
RH Instance ID in the list returned by RhEnumerateInstances.

An RH infrastructure implementing this function shall recognize RH Instance IDs only for those 
RH systems that it services. 

If multiple RH infrastructures are present on the current host, an intermediate layer of functionality 
between the application and infrastructures may be defined, that implements this function. If this is 
the case, that intermediate layer should choose the RH infrastructure that provides the API services 
to the application, based on the value of the parameter InstanceID. When doing this, the 
intermediate layer may process the InstanceID before passing it to the infrastructure (removing, for 
example, the textual identifier of the infrastructure).

6.2.2.3 RhClose

Prototype:

HSI_STATUS 
RhClose ( IN RH_HANDLE Handle );

Arguments:

Handle – the handle to the infrastructure obtained via RhOpen.

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle 

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function closes the connection between the application program and the RH infrastructure and 
destroys the handle. It should be called at the end to gracefully terminate the communication 
between the application and the infrastructure.

6.2.2.4 RhGetInstanceID

Prototype:

HSI_STATUS 
RhGeInstanceID( 

IN RH_HANDLE Handle,
 OUT char *pInstanceID,
 IN uint32 InstanceIDLength,

 OUT ULONG *pActualSize );
44 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
Arguments: 

Handle – the handle of the current session

pInstanceID – pointer to the character buffer where the RH Instance ID associated with 
the given handle is stored as a null-terminated character string

InstanceIDLength the size of the buffer; if this size is too small for the output, this function 
fails. 

pActualSize - this variable receives the actual size of the returned Instance ID; in the 
case of the error code HSI_STATUS_INSUFFICIENT_BUFFER 
returned, this is the minimal required size of the buffer.

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle

HSI_STATUS_INSUFFICIENT_BUFFER
returned if the buffer pInstanceID is too small to store the RH Instance 
ID

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure 

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function returns the RH Instance ID for the given session handle. This is a character string that 
identifies the specific RH system with which the application communicates via the RH API in the 
specified session. The format of this string is implementation-dependent.

If multiple RH infrastructures are present on the current host, an intermediate layer of functionality 
between the application and infrastructures may be defined, that implements this function. If this is 
the case, that intermediate layer should ensure that the value returned to the application can be 
used to get access to the same RH System via RhOpen (for example, the intermediate layer may 
prepend the string returned to the application by the textual identifier of the infrastructure).

6.2.3 Domain and Host Information API

6.2.3.1 RhGetDomainCount

Prototype:

HSI_STATUS 
RhGetDomainCount(
 IN RH_HANDLE Handle,
 OUT uint32 *pCount );

Arguments:
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  45



Redundant Host API
Handle – the handle of the current session

pCount – pointer to the variable that receives the current number of domains in the 
system

Return Value:

HSI_STATUS_SUCCESS
returned in the case of success

HSI_STATUS_INVALID_PARAMETER 
invalid session handle

Other, implementation-defined HSI_STATUS values 
returned if other errors occurred during execution of this function

Synopsis:

This function returns the number of domains in the RH system that can be owned by the hosts in 
the system.

6.2.3.2 RhGetDomainNumbers

Prototype:

HSI_STATUS 
RhGetDomainNumbers(
 IN RH_HANDLE Handle,
 OUT uint32 *pDomainNumbersArray,

IN uint32 ArraySize,
 OUT uint32 *pActualSize );

Arguments:

Handle – the handle of the current session

pDomainNumbersArray – pointer to the array where the list of domain numbers is placed

ArraySize - the size (in items of type uint32) of the buffer initially provided for the 
array by the caller

pActualSize - pointer to the variable where the actual number of items in the list is 
stored (even if the initial size is too small and the function returns the 
error HSI_STATUS_INSUFFICIENT_BUFFER).

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle

HSI_STATUS_INSUFFICIENT_BUFFER
returned if the buffer provided for the array by the caller is too small; in 
that case, the array isn’t filled in but the location pointed by pActualSize 
is set to the correct value to assist the caller in subsequent buffer 
allocation. 
46 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
Other, implementation-defined HSI_STATUS values 
 returned if other errors occurred during execution of this function

Synopsis:

This function retrieves the list of numbers of known domains that comprise the RH system. Each 
domain number is an arbitrary uint32 value. 

Before the call, the caller should allocate a buffer that can accommodate a sufficient number of 
uint32 values, and pass its address in the pDomainNumbersArray parameter. The parameter 
ArraySize should be set equal to the size of the buffer in uint32 items. The domain count returned 
from “RhGetDomainCount” can be used as the value of this parameter. On return, the function 
populates the buffer with the array of domain numbers for all domains in the system, and places the 
actual number of returned domain numbers into the output parameter *pActualSize. If the specified 
ArraySize is too small, the function returns status HSI_STATUS_INSUFFICIENT_BUFFER, and 
doesn’t populate the buffer, but still sets the parameter *pActualSize to the required size of the 
buffer.

6.2.3.3 RhGetDomainOwnership

Prototype:

HSI_STATUS 
RhGetDomainOwnership(
 IN RH_HANDLE Handle,
 IN uint32 Domain, 
 OUT uint32 *pOwningHost );

Arguments:

Handle – the handle of the current session

Domain – the domain number

pOwningHost pointer to the variable that stores the number of the host (if any) that 
owns this domain; value RH_NO_DESTINATION_HOST means “not 
owned by any host”

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function 

Synopsis:

This function returns the current owning host for the specified domain.

6.2.3.4 RhGetDomainSlotPath

Prototype:
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  47



Redundant Host API
HSI_STATUS 
RhGetDomainSlotPath (
 IN RH_HANDLE Handle,
 IN uint32 Host,
 IN uint32 Domain,

OUT uint16 *pRootBus,
 OUT char *pOutSlotPath,
 IN uint32 SlotPathLength,
 OUT ULONG *pActualSize );

Arguments:

Handle – the handle of the current session

Host - the target host number

Domain – the domain number 

pRootBus – pointer to the variable where the infrastructure stores the root bus 
number of the PCI tree of this domain. This value is 0 for the first or 
single PCI tree. For additional PCI trees, this value is implementation-
dependent, but is guaranteed to be non-zero.

pOutSlotPath pointer to the buffer where the slot path of the root bridge of the specified 
domain is written as a null-terminated string

SlotPathLength the size of the buffer; if this size is too small for the output, this function 
fails. The size of the maximum possible output is 513 characters (for the 
longest slot path in the system with 256 buses plus the null termination 
character). 

pActualSize - this variable receives the actual size of the returned slot path; in the case 
of HSI_STATUS_INSUFFICIENT_BUFFER, this is the minimum 
required size of the buffer.

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_INVALID_PARAMETER 
invalid session handle or the domain number is invalid 

HSI_STATUS_INSUFFICIENT_BUFFER
returned if SlotPathLength is too small

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function 

Synopsis:

This function returns the slot path of the domain parent bridge for the specified domain with 
respect to the target host.

This function is guaranteed to return successfully only if the target host owns the specified domain. 
If the target host does not own the specified domain, the function fails, unless the infrastructure 
knows in advance what slot path the domain will have when owned by the target host. This slot 
path must not be affected by any switchovers that may take place in the RH system before the 
target host actually acquires the specified domain.
48 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
The slot path is stored as a null-terminated sequence of two-character groups. Each group describes 
one item of the slot path and represents the number (DeviceNumber * 8 + FunctionNumber) for the 
corresponding PCI-PCI bridge in hexadecimal. The two hexadecimal digits of this number are 
represented by two characters from the set ‘0’..’9’, ‘A’..’F’.

6.2.3.5 RhGetDomainSlotCount

Prototype:

HSI_STATUS 
RhGetDomainSlotCount(
 IN RH_HANDLE Handle,
 IN uint32 Domain,
 OUT uint32 *pPhysSlotCount);

Arguments:

Handle – the handle of the current session

Domain – the domain number 

pPhysSlotCount pointer to the variable where the number of physical slots in this domain 
is placed

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function returns the number of physical slots in the specified domain. This number can be 
used to specify the size of the buffer for the physical slot numbers in a subsequent call to 
RhGetDomainSlots.

6.2.3.6 RhGetDomainSlots

Prototype:

HSI_STATUS 
RhGetDomainSlots(
 IN RH_HANDLE Handle,
 IN uint32 Domain,

OUT PHYSICAL_SLOT_ID *pSlotNumbersArray,
IN uint32 ArraySize,

 OUT uint32 *pActualSize );

Arguments:

Handle the handle of the current session
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  49



Redundant Host API
Domain the domain number

pSlotNumbersArray pointer to the array where the list of slot numbers for the specified 
domain is placed

ArraySize the size (in items of type PHYSICAL_SLOT_ID) of the buffer initially 
provided for the array by the caller

pActualSize pointer to the variable where the actual number of items in the list is 
stored (even if the initial size is too small and the function returns the 
error HSI_STATUS_INSUFFICIENT_BUFFER).

Return Value:

HSI_STATUS_SUCCESS
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle

HSI_STATUS_INSUFFICIENT_BUFFER
returned if the buffer provided for the array by the caller is too small; in 
that case, the array isn’t filled in but the location pointed by pActualSize 
is set to correct value to assist the caller in subsequent buffer allocation. 

Other, implementation-defined HSI_STATUS values 
returned if other errors occurred during execution of this function

Synopsis:

This function retrieves the list of physical slot numbers for the specified domain. Each physical slot 
number is an arbitrary (but system-wide, unique) combination of ShelfID and SlotID values.

Before the call, the caller should allocate a buffer that can accommodate a sufficient number of 
PHYSICAL_SLOT_ID structures, and pass its address in the pSlotNumbersArray parameter. The 
parameter ArraySize should be set equal to the size of the buffer in PHYSICAL_SLOT_ID items. 
The slot count returned from “RhGetDomainSlotCount” can be used as the value of this parameter. 
On return, the function populates the buffer with the array of slot numbers for all slots in the 
domain, and places the actual number of returned slot numbers into the output parameter 
*pActualSize. If the specified ArraySize is too small, the function returns status 
HSI_STATUS_INSUFFICIENT_BUFFER, and doesn’t populate the buffer, but still sets the 
parameter *pActualSize to the required size of the buffer.

6.2.3.7 RhGetSlotDomain

Prototype:

HSI_STATUS 
RhGetSlotDomain(
 IN RH_HANDLE Handle,
 IN PHYSICAL_SLOT_ID PhysSlot, 
 OUT uint32 *pDomain);

Arguments:

Handle the handle of the current session
50 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
PhysSlot the physical slot number (represented as combination of Shelf ID and 
Slot ID)

pDomain pointer to the variable where the number of the domain is placed

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle

Other implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function 

Synopsis:

Get the domain that owns the specified slot. This function is used to retrieve the number of the 
domain to which the specified physical slot currently belongs.

The physical slot is represented by its Shelf ID and the Slot ID inside the shelf.

6.2.3.8 RhGetCurrentHostNumber

Prototype:

HSI_STATUS 
RhGetCurrentHostNumber(
 IN RH_HANDLE Handle,
 OUT uint32 *pHost);

Arguments:

Handle the handle of the current session

pHost pointer to the variable where the current host number is placed

Return Value:

HSI_STATUS_SUCCESS
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle 

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function returns the number of the current host in an RH system (that is, the host on which this 
function has been called).

6.2.3.9 RhGetHostCount

Prototype:
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  51



Redundant Host API
HSI_STATUS 
RhGetHostCount(
 IN RH_HANDLE Handle,
 OUT uint32 *pHostCount);

Arguments:

Handle the handle of the current session

pHostCount pointer to the variable where the host count is placed

Return Value:

HSI_STATUS_SUCCESS
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle 

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function gets the number of hosts in the system. This function can be used to obtain the total 
number of hosts in a RH system.

6.2.3.10 RhGetHostNumbers

Prototype:

HSI_STATUS 
RhGetHostNumbers(
 IN RH_HANDLE Handle,
 OUT uint32 *pHostNumbersArray,

IN uint32 ArraySize,
 OUT uint32 *pActualSize );

Arguments:

Handle the handle of the current session

pHostNumbersArray pointer to the array where the list of host numbers is placed

ArraySize - the size (in items of type uint32) of the buffer initially provided for the 
array by the caller

pActualSize - pointer to the variable where the actual number of items in the list is 
stored (even if the initial size is too small and the function returns the 
error HSI_STATUS_INSUFFICIENT_BUFFER).

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_INVALID_PARAMETER 
invalid session handle
52 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
HSI_STATUS_INSUFFICIENT_BUFFER
returned if the buffer provided for the array by the caller is too small; in 
that case, the array isn’t filled in but the location pointed by pActualSize 
is set to a correct value to assist the caller in subsequent buffer allocation. 

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function retrieves the list of numbers of known hosts that comprise the RH system. Each host 
number is an arbitrary uint32 value. 

Before the call, the caller should allocate a buffer that can accommodate a sufficient number of 
uint32 values, and pass its address in the pHostNumbersArray parameter. The parameter ArraySize 
should be set equal to the size of the buffer in uint32 items. The host count returned from 
“RhGetHostCount” can be used as the value of this parameter. On return, the function populates 
the buffer with the array of host numbers for all hosts in the system, and places the actual number 
of returned host numbers into the output parameter *pActualSize. If the specified ArraySize is too 
small, the function returns status HSI_STATUS_INSUFFICIENT_BUFFER, and doesn’t populate 
the buffer, but still sets the parameter *pActualSize to the required size of the buffer. 

6.2.3.11 RhGetHostName

Prototype:

HSI_STATUS 
RhGetHostName(
 IN RH_HANDLE Handle,
 IN uint32 Host,
 OUT char *pOutHostName,
 IN uint32 HostNameLength,
 OUT ULONG *pActualSize );

Arguments:

Handle the handle of the current session

Host the host number

pOutHostName pointer to the character buffer where the host name is stored as a null-
terminated character string

HostNameLength the size of the buffer; if this size is too small for the output, this function 
fails. 

pActualSize - this variable receives the actual size of the returned host name; in the 
case of the error code HSI_STATUS_INSUFFICIENT_BUFFER 
returned, this is the minimal required size of the buffer.

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  53



Redundant Host API
HSI_STATUS_INSUFFICIENT_BUFFER 
returned if the buffer OutHostName is too small to store the host name

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure 

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function returns the symbolic name for the specified host. This is some kind of a network 
name (for example, NETBIOS name or TCP/IP host name) that can be used to establish a network 
connection to that host. This allows the hosts to communicate with each other over the network.

6.2.3.12 RhSetHostAvailability

Prototype:

HSI_STATUS 
RhSetHostAvailability(
 IN RH_HANDLE Handle,
 IN uint32 Host,
 IN BOOLEAN Available);

Arguments:

Handle the handle of the current session

Host the host number

Available the new availability status of the host. Setting this argument to FALSE 
means that the host is brought into “isolation mode” in which it cannot 
own domains and cannot accept new domains via switchover. The host 
should not have any owned domains when its availability status is set to 
FALSE.

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle, or invalid target host number, or 
Available=FALSE and the target host owns domains

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure 

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function changes the availability status of the target host for the RH infrastructure. Setting this 
status to FALSE brings the host into “isolation mode” in which the host cannot own domains and 
cannot participate in domain switchovers. For such a host, the function RhGetHostAvailability 
54 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
returns FALSE. This mode can be used for configuration purposes, for example, to update system 
software on the host. Setting the status to TRUE brings the host back from the isolation mode to the 
state in which it can own and acquire domains.

If the parameter Available is FALSE, the target host must not own any domains when this function 
is called.

6.2.3.13 RhGetHostAvailability

Prototype:

HSI_STATUS 
RhGetHostAvailability(
 IN RH_HANDLE Handle,
 IN uint32 Host,
 OUT BOOLEAN *pAvailable);

Arguments:

Handle the handle of the current session

Host the host number

pAvailable pointer to the variable that receives a Boolean value: TRUE if the 
specified host is currently available and can own domains, FALSE 
otherwise (if the host is switched off or isolated from the rest of RH 
system).

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure 

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function can be used to determine whether the specified host in an RH system is up and 
running and can own domains. Returning *pAvailable=FALSE means that the specified host 
currently does not participate in RH activities and cannot own domains (for example, is switched 
off or runs in a special “isolation mode” or is unavailable due to some other reason).

The method of determining the availability status of the host is implementation-dependent. For 
example, the infrastructure may be able to determine that the host is physically present but does not 
have its inter-host communication queues initialized appropriately. In that case, it is considered not 
available. In other implementations, there may be a specific hardware register on the host that is 
visible to other hosts and has a bit that specifies host availability for RH activities (1=available, 
0=not available). Other mechanisms are possible.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  55



Redundant Host API
6.2.3.14 RhGetDomainAvailabilityToHost

Prototype:

HSI_STATUS 
RhGetDomainAvailabilityToHost(
 IN RH_HANDLE Handle,
 IN uint32 Host,

IN uint32 Domain,
 OUT BOOLEAN *pAvailable);

Arguments:

Handle the handle of the current session

Host the host number

Domain the domain number

pAvailable pointer to the variable that receives a Boolean value: TRUE if the 
specified host can own the specified domain, FALSE otherwise.

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_INVALID_PARAMETER 
invalid session handle 

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function is used in asymmetric RSS systems where some domains can be owned by some 
hosts but not by other hosts (for example, due to architectural constraints). This function returns a 
Boolean value (via pAvailable) that indicates whether the specified host can own the specified 
domain.

6.2.4 Slot Information API

6.2.4.1 RhGetPhysicalSlotInformation

Prototype:

HSI_STATUS 
RhGetPhysicalSlotInformation(
 IN RH_HANDLE Handle,
 IN PHYSICAL_SLOT_ID PhysSlot, 

OUT RH_SLOT_DESCRIPTOR *pInfoBuffer,
IN uint32 InfoBufferSize,

 OUT uint32 *pActualSize );

Arguments:

Handle the handle of the current session
56 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
PhysSlot obtains information for given physical slot number

pInfoBuffer pointer to the buffer where the information is placed

InfoBufferSize the size (in bytes) of the buffer initially provided for the array by the 
caller

pActualSize pointer to the variable where the required size of the buffer is stored 
(even if the initial size is too small and the function returns the error 
HSI_STATUS_INSUFFICIENT_BUFFER).

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle

HSI_NO_SUCH_DEVICE 
if the specified slot is empty

HSI_STATUS_INSUFFICIENT_BUFFER 
returned if the information buffer provided by the caller is too small; in 
that case, the buffer isn’t filled in but the location pointed by pActualSize 
is set to a correct value to assist the caller in subsequent buffer allocation.

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function retrieves information about the device in the specified physical slot. If the device 
consists of several PCI functions, several information records are placed in the buffer, one for each 
PCI function. The following information is provided in each record, all of type 
RH_SLOT_DESCRIPTOR:

Size This is the size of a particular RH_SLOT_DESCRIPTOR value 
including the variable-length SlotPath field.

Device addressing attributes:

PhysicalSlot The number of the physical slot in the format (shelf-ID, physical-slot-
ID); the device described by this descriptor resides in this slot 

PhysSlotDepth The number of bridging levels between this device and the physical slot; 
this value is 0 for this call (since this call returns information about 
devices directly placed in the physical slots)

OwningHost The number of the host that currently owns the domain this device 
belongs to

RootBusNumber The PCI bus number of the root bus of the PCI hierarchy the device 
resides in; is 0 for single-root PCI hierarchies. This value is 16 bit to 
accommodate possible future extensions to PCI that allow more than 256 
PCI buses in the system
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  57



Redundant Host API
SlotPath The slot path from the root bus to the device. The slot path is stored as a 
null-terminated sequence of two-character groups. Each group describes 
one item of the slot path and represents the number (DeviceNumber * 8 
+ FunctionNumber) for the corresponding PCI-PCI bridge in 
hexadecimal. The two hexadecimal digits of this number are represented 
by two characters from the set ‘0’..’9’, ‘A’..’F’.

BusNumber The bus number for the device. This value is 16 bit to accommodate 
possible future extensions to PCI that allow more than 256 PCI buses in 
the system

DeviceNumber The device number for the device

FunctionNumber The function number for the device

Device configuration attributes (all based on PCI configuration space attributes):

VendorID/DeviceID/RevisionID 
Identifies the manufacturer of the device that provides the PCI interface 
for the slot, the specific device product among those made by that 
manufacturer, and the revision level of that device.

SubsystemVendorID/SubsystemID
Identifies the manufacturer of the board and the specific board product 
among those made by that manufacturer.

BaseClass/SubClass/ProgIF 
Identifies the type of device and its programming interface

HeaderType - Identifies the layout of the second part of the pre-defined header of the 
device that provides the PCI interface for the slot (for example, 0 for 
conventional PCI device, 1 for PCI-PCI bridge).

The field NeedsReset indicates whether this device in its current state needs to be reset if 
switchover takes place. The value RESET_NOT_REQUIRED in this field means one of the 
following things:

• The device is already prepared for switchover.

• The device is not in use.

• The driver for the device is switchover-aware and is able to correctly bring it into a safe state 
after the switchover.

The value UNKNOWN means that the infrastructure does not know whether or not the device 
needs reset.

6.2.4.2 RhGetSlotChildInformation

Prototype:

HSI_STATUS 
RhGetSlotChildInformation(
 IN RH_HANDLE Handle,
 IN PHYSICAL_SLOT_ID PhysSlot, 
 IN char *pSlotPath,
58 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
OUT RH_SLOT_DESCRIPTOR *pInfoBuffer,
IN uint32 InfoBufferSize,

 OUT uint32 *pActualSize );

Arguments:

Handle the handle of the current session

PhysSlot the physical slot number below which the devices in question are nested

pSlotPath the slot path to the parent bridge for the devices

pInfoBuffer pointer to the buffer where the information about devices is placed

InfoBufferSize the size (in bytes) of the buffer initially provided for the array by the 
caller

pActualSize pointer to the variable where the required size of the buffer is stored 
(even if the initial size is too small and the function returns the error 
HSI_STATUS_INSUFFICIENT_BUFFER).

Return Value:

HSI_STATUS_SUCCESS
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle

HSI_NO_SUCH_DEVICE 
if there are no child devices below the specified bridge

HSI_STATUS_INSUFFICIENT_BUFFER
returned if the information buffer provided by the caller is too small; in 
that case, the buffer isn’t filled in but the location pointed by pActualSize 
is set to a correct value to assist the caller in subsequent buffer allocation. 

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function retrieves information about child devices below the specified bridge that occupies the 
specified physical slot or is nested below it. The bridge is specified by the input parameter 
SlotPath.

The following information is provided for each device as an RH_SLOT_DESCRIPTOR structure:

Size This is the size of a particular RH_SLOT_DESCRIPTOR value 
including the variable-length SlotPath field.

Device addressing attributes:

PhysicalSlot The number of the physical slot in the format (shelf-ID, physical-slot-
ID); the device described by this descriptor is nested below this slot 

PhysSlotDepth The number of bridging levels between this device and the physical slot.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  59



Redundant Host API
OwningHost The number of the host that currently owns the domain this device 
belongs to

RootBusNumber The PCI bus number of the root bus of the PCI hierarchy the device 
resides in; is 0 for single-root PCI hierarchies. This value is 16 bit to 
accommodate possible future extensions to PCI that allow more than 256 
PCI buses in the system.

SlotPath The slot path from the root bus to the nested device. The slot path is 
stored as a null-terminated sequence of two-character groups. Each 
group describes one item of the slot path and represents the number 
(DeviceNumber * 8 + FunctionNumber) for the corresponding PCI-PCI 
bridge in hexadecimal. The two hexadecimal digits of this number are 
represented by two characters from the set ‘0’..’9’, ‘A’..’F’.

BusNumber The bus number for the device. This value is 16 bit to accommodate 
possible future extensions to PCI that allow more than 256 PCI buses in 
the system.

DeviceNumber The device number for the device

FunctionNumber The function number for the device

Device configuration attributes (all based on PCI configuration space attributes of a PCI device 
nested within the slot):

VendorID/DeviceID/RevisionID
Identifies the manufacturer of the device that provides a nested PCI 
interface within the slot, the specific device product among those made 
by that manufacturer, and the revision level of that device.

SubsystemVendorID/SubsystemID
Identifies the manufacturer of a subsystem nested within the slot (say, a 
PMC module) and the specific subsystem product among those made by 
that manufacturer.

BaseClass/SubClass/ProgIF 
Identifies the type of nested PCI device and its programming interface

HeaderType
Identifies the layout of the second part of the pre-defined header of the 
nested PCI device (for example, 0 for a conventional PCI device, 1 for a 
PCI-PCI bridge.

The field NeedsReset indicates whether this device in its current state needs to be reset if 
switchover takes place. The value RESET_NOT_REQUIRED in this field means one of the 
following things:

• The device is already prepared for switchover.

• The device is not in use.

• The driver for the device is switchover-aware and is able to correctly bring it into a safe state 
after the switchover.

The value UNKNOWN means that the infrastructure does not know whether the device needs reset 
or not.
60 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
This function can be used to enumerate devices nested below physical slots if a PCI-PCI bridge 
occupies the physical slot. To get information about all devices at the next nesting level, this 
function should be called with the physical slot number and slot path to the immediate parent 
bridge. This slot path is taken from the slot information structure for the immediate parent. To 
enumerate devices immediately nested below the bridge in the physical slot, the caller should pass 
the slot path from the slot information structure obtained via RhGetPhysicalSlotInformation.

The returned information is represented by the array of structures of variable length. Each structure 
describes one device located immediately below the parent PCI-PCI bridge. The total length of the 
array is returned in the location pointed by pActualSize. If some of the information structures 
identify corresponding devices as PCI-PCI bridges, the caller can go deeper and enumerate the PCI 
devices below that bridge using this function.

6.2.5 Switchover API

6.2.5.1 Switchover Scenarios and Theory of Operation

6.2.5.1.1 Fully Cooperative Switchover

In the cooperative switchover scenario, before giving up control over a domain, the owning host 
first prepares the PCI devices on this domain for switchover by gracefully shutting down operation 
on them and stopping the device drivers working with these devices. This operation is called 
software disconnection. This step is taken to ensure that the PCI devices appear to the new owner 
in a known state and that no transactions in progress are lost.

The exact meaning of software disconnection depends on the devices in the domain and their 
drivers. For device drivers that are not switchover-aware, software disconnection means shutdown 
of the corresponding devices and removal of all their software representations (device objects and 
so forth). Switchover-aware drivers may use “warmer” methods of preparation for switchover, 
keeping the device active to some degree during the switchover but preventing it from doing any 
damage to the new owning host immediately after the switchover (for example, preventing 
outstanding DMA transactions from this device to the host during the switchover). 

Cooperative switchover can be initiated either by the owning host (in which case it voluntarily 
gives up control of this domain), or by the new owner of the domain, or by some third-party host. 
In the last two cases, an inter-host communication channel is used to request the owning host to 
initiate software disconnection. In all cases, software disconnection is initiated by calling the 
RhPrepareForSwitchover function.

Once started, software disconnection can be rejected by software (if, for example, a PCI device in 
the domain performs an important operation that cannot be interrupted). Software disconnection 
can also be left pending for a long time (for example, awaiting completion of an important 
transaction). The function RhPrepareForSwitchover is asynchronous and does not wait for 
completion of software disconnection. The current software connection state, associated with the 
domain, can be used to track the progress of the software disconnection operation.

The initial software connection state of the domain is INACTIVE. For a domain in the normal 
state, the software connection state is CONNECTED. When software disconnection is initiated for 
a domain, the corresponding state becomes DISCONNECTING and stays DISCONNECTING 
while software disconnection is pending for the domain. When software disconnection completes 
successfully, the state goes to DISCONNECTED. If software disconnection is terminated 
unsuccessfully, the state goes back to CONNECTED.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  61



Redundant Host API
Software connection is the inverse action to software disconnection: it starts the drivers for PCI 
devices in the domain and resumes normal operation. When initiated for a domain in the 
DISCONNECTED state, it brings the domain to CONNECTED state through the intermediate 
CONNECTING state. Software connection can be used to cancel the effect of software 
disconnection for a domain during switchover preparation. For example, suppose that two domains 
should be switched over simultaneously in an atomic transaction; software disconnection 
succeeded for the first domain but was rejected for the second domain. As a result, the switchover 
is not possible and the first domain should be brought back into operation by software connection.

The same states apply to separate slots in the domain. They can be retrieved on a per-slot basis by 
separate polling functions or the caller can subscribe for asynchronous notifications about slot state 
changes. This makes it possible to invoke partially cooperative switchovers, in which the 
switchover is initiated when software disconnection is complete for some (more important) devices 
in the domain but not yet for other (less important) devices. These last devices should be reset 
during or immediately after the switchover to prevent possible damage to the new owning host.

The requesting host may specify a timeout for software disconnection. This value, expressed in 
milliseconds, serves as an indication to the owning host of the time interval during which the 
software disconnection should be completed. The requesting host indicates that after the expiration 
of the timeout it intends to either abandon the switchover or perform forced switchover. 

After the software disconnection of the relevant domains is complete, switchover is initiated to 
change ownership of the domains. To trigger the switchover, the RhPerformSwitchover function 
should be called.

After the switchover, software connection is automatically initiated for the relevant domains on the 
receiving hosts. It is not necessary to call any functions after the switchover to software connect the 
received domains.

6.2.5.1.2 Partially Cooperative Switchover

With this type of the switchover, software disconnection takes place for some but not all of the 
devices in the domain. It may be considered that some devices need to be prepared for switchover 
while other devices may be switched over without preparation.

Another possible scenario is that some devices are considered “more important” and the others 
“less important”. The switchover is initiated as soon as software disconnection completes for 
“more important” devices, without waiting for completion of preparation for “less important” 
devices.

In all these cases, at the moment of switchover some devices are prepared for switchover, while 
other devices are not and may need to be brought into a known initial state after the switchover.

After the switchover, software connection is automatically initiated for the relevant domains on the 
receiving hosts; so it is not necessary to call any functions after the switchover to software connect 
the received domains.

6.2.5.1.3 Forced Switchover

In the forced switchover scenario, the domains are not software disconnected before the 
switchover, so device operation is not quiesced and for the device drivers and other software on the 
resigning host the PCI devices physically disappear, possibly in the middle of transactions. PCI 
devices are generally in an unknown state after the switchover. However, if the parameter Reset is 
used in the RhPerformSwitchover function, the PCI buses of the domain are reset, which brings the 
devices into the known initial state on the new owner host.
62 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
Hence, forced switchover is potentially destructive for the owning host and should be used with 
care.

To perform forced switchover, it is sufficient to call the RhPerformSwitchover function. Forced 
switchover can be initiated either by the owning host (in which case it voluntarily gives up control 
of this domain), or by the new owner of the domain, or by some third-party host. In the last case, an 
inter-host communication channel may be needed to request one of the immediately participating 
hosts to perform the switchover.

After the switchover, software connection is automatically initiated for the relevant domains on the 
receiving hosts.

6.2.5.1.4 Hostile Switchover

Even in the case of a forced switchover request, there may be a possibility for the owning host to 
intercept the hardware switchover request and prevent it via hostile actions with respect to the 
destination host (for example, powering it off). An additional parameter (“Hostile”) to the 
RhPerformSwitchover function can be used to perform unconditional (hostile) switchover without 
any possibility for the owning host to prevent it.

After the switchover, software connection is automatically initiated for the relevant domains on the 
receiving hosts.

6.2.5.1.5 Hardware-Initiated Switchover

This type of switchover is initiated by hardware in the case of a hardware-initiated alarm (for 
example, a watchdog timer expiration) on the owning host. The new owning hosts for domains in 
this case are specified in advance via RhSetHwDestinationHost function. The parameter Reset in 
this function controls whether the PCI buses of the domain are reset after the switchover. If this 
parameter is TRUE, the PCI buses of the domain are reset after the hardware-initiated switchover, 
which brings the devices into a known initial state on the new owning host.

The RhSetHwDestinationHost function can be called either on the owning host or on some third-
party host. In the last case, an inter-host communication channel may be needed to request the 
owning host to register the destination host in hardware.

During hardware-initiated switchover, device operation is not quiesced and for the device drivers 
and other software on the resigning host the PCI devices disappear, possibly in the middle of 
transactions. However, this is not very important for this type of switchover, since the usual reason 
for switchover in this case is a malfunction of the owning host that requires some corrective 
actions, possibly including host reset. 

After the switchover, software connection is automatically initiated for the relevant domains on the 
receiving hosts.

6.2.5.2 RhPrepareForSwitchover

Prototype:

HSI_STATUS 
RhPrepareForSwitchover(
 IN RH_HANDLE Handle,
 IN uint32 *pDomains,
 IN uint32 DomainCount,
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  63



Redundant Host API
 IN uint32 DestinationHost,
 IN uint32 Timeout,
 IN BOOLEAN Persist );

Arguments:

Handle the handle of the current session

pDomains pointer to the array of numbers of the domains to disconnect; all domains 
must be owned by the same host

DomainCount the number of elements in the array of domain numbers

DestinationHost the number of the destination host for the intended switchover of the 
specified domains; value RH_NO_DESTINATION_HOST meaning 
that no host owns the domains.

Timeout the time interval (in milliseconds) that the requestor agrees to wait for the 
completion of disconnection. After this time expires, the requestor either 
forces the switchover or abandons it. This parameter is advisory and can 
be ignored by the target host. The special value 0 means that the 
requestor does not impose any time constraints to the software 
disconnection.

Persist this parameter specifies what should be done in the case that software 
disconnection is not immediately possible for some slots. TRUE means 
that the target host should continue repeating attempts to software 
disconnect offending devices until software disconnection succeeds for 
all devices or the software disconnection request is cancelled by the 
requestor. FALSE means that the software disconnection of all requested 
domains should fail in that case and devices that have been software 
disconnected already should be reconnected.

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle or the specified domain does not exist

HSI_STATUS_REQUEST_DENIED
returned if the software disconnection request issued by the current host 
has been denied

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other implementation-defined HSI_STATUS values 
returned if other errors occurred during execution of this function

Synopsis:

This function requests a domain software disconnection on the owning host in preparation for a 
switchover. The exact meaning of software disconnection depends on the devices in the domains 
and their drivers. For the device drivers that are not switchover-aware, this means shutdown of the 
corresponding devices and removal of all devices’ software representations (device objects and so 
forth). Switchover-aware drivers may use “warmer” methods for preparation for switchover.
64 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
This function just initiates the software disconnection and does not wait for its completion. The 
function RhGetDomainSwConnectionStatus can be used to track the progress of the pending 
disconnection.

In the cooperative switchover scenario, the domains should be software disconnected before the 
switchover; this guarantees that the former owning host software does not crash because of devices 
unexpectedly disappearing and that device activity does not crash the newly owning host 
immediately after the switchover.

The function can be called on a host that does not own the specified domains; in that case, the 
request may be forwarded to the owning host via an applicable inter-host communication channel. 
However, all specified domains must be owned by the same host.

The caller can specify how urgent the software disconnection request is by using the Timeout 
parameter. This value specifies the time interval (in milliseconds) during which the owning host 
should try to complete the software disconnection. The caller assumes that after this timeout 
expires: 

• It stops waiting for the software disconnection to complete

• It either abandons the switchover attempt or initiates a forced switchover that may be partially 
cooperative if software disconnection succeeds for some device(s) by that time.

6.2.5.3 RhCancelPrepareForSwitchover

Prototype:

HSI_STATUS 
RhCancelPrepareForSwitchover(
 IN RH_HANDLE Handle,
 IN uint32 *pDomains,
 IN uint32 DomainCount );

Arguments:

Handle – the handle of the current session

pDomains – pointer to the array of numbers of the domains to connect; all domains 
must be owned by the same host

DomainCount the number of elements in the array of domain numbers

Return Value:

HSI_STATUS_SUCCESS returned in the case of success

HSI_STATUS_INVALID_PARAMETER 
invalid session handle or the specified domain does not exist

HSI_STATUS_REQUEST_DENIED
returned if the software connection request issued by the current host has 
been denied

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values 
returned if other errors occurred during execution of this function
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  65



Redundant Host API
Synopsis:

This function requests domain software connection. It initiates software connection for the 
specified domains: 

• Startup of all devices in the domain 

• Creation of corresponding software representation for devices (device objects and so forth)

If software disconnection is in progress for this domain, this function cancels the software 
disconnection

This function just initiates the software connection–it does not wait for its completion. The 
function RhGetDomainSwConnectionStatus can be used to poll the progress of the pending 
connection. Alternatively, the notification functions provide a callback-based notification 
approach. See Section 6.2.6, “Notification, Reporting and Alarms” on page 70 for more 
information on these functions.

In the cooperative switchover scenario, this function should be called for the domains that have 
been software disconnected if the switchover is being cancelled (for example, because another 
domain specified in the switchover request cannot be software disconnected).

The function can be called on a host that does not own the domain; in that case, the request may be 
forwarded to the owning host via an applicable inter-host communication channel. However, the 
same host must own all specified domains.

6.2.5.4 RhGetDomainSwConnectionStatus

Prototype:

HSI_STATUS 
RhGetDomainSwConnectionStatus(
 IN RH_HANDLE Handle,
 IN uint32 Domain,
 OUT RH_DOMAIN_SWC_STATE *pState );

Arguments:

Handle – the handle of the current session

Domain – the number of the domain to query state

pState – pointer to the variable that receives the state

Return Value:

HSI_STATUS_SUCCESS 
returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle or the specified domain does not exist

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:
66 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
Get domain software connection status. This function returns the current state of the specified 
domain with respect to software connection/disconnection. There exist two stable 
(DISCONNECTED, CONNECTED) and two transitional (DISCONNECTING, CONNECTING) 
states.

This function can be used during a cooperative switchover to track progress of a pending software 
connection or disconnection request.

The function can be called on a host that does not own the domain.

6.2.5.5 RhGetSlotSwConnectionStatus

Prototype:

HSI_STATUS 
RhGetSlotSwConnectionStatus(
 IN RH_HANDLE Handle,
 IN PHYSICAL_SLOT_ID Slot,
 OUT RH_DOMAIN_SWC_STATE *pState );

Arguments:

Handle – the handle of the current session

Slot – the physical slot number to query state for

pState – pointer to the variable that receives the state

Return Value:

HSI_STATUS_SUCCESS returned in the case of success

HSI_STATUS_INVALID_PARAMETER 
invalid session handle or the specified slot does not exist

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

Get physical slot software connection status. This function returns the current state of the specified 
slot with respect to software connection/disconnection. There exist two stable (DISCONNECTED, 
CONNECTED) and two transitional (DISCONNECTING, CONNECTING) states.

This function can be used during a cooperative switchover to track progress of a pending software 
connection or disconnection request on a per-slot basis.

The function can be called on a host that does not own the domain to which the slot belongs.

6.2.5.6 RhPerformSwitchover

Prototype:
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  67



Redundant Host API
HSI_STATUS 
RhPerformSwitchover(
 IN RH_HANDLE Handle,
 IN uint32 DestinationHost,
 IN uint32 *pDomains,

IN uint32 DomainCount,
 IN BOOLEAN Reset,
 IN BOOLEAN Hostile );

Arguments:

Handle – the handle of the current session

DestinationHost the number of the host that should own the domains after the switchover; 
value RH_NO_DESTINATION_HOST means “no host should own the 
specified domains”

pDomains – the array of domain numbers that should be taken over. Passing NULL 
as this parameter requests that all existing domains should be switched 
over to the destination host.

DomainCount -  the number of items in the array pDomains. 

Reset – if TRUE, the PCI buses of domains are reset after the switchover

Hostile - if TRUE, the switchover is performed in a hostile way (the owning host 
is not given any opportunity before the switchover to be notified and to 
prevent it).

Return Value:

HSI_STATUS_SUCCESS returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle or any of the specified domains do not exist, or 
wrong parameters are specified (for example, DomainCount=0 and 
Domains != NULL).

HSI_STATUS_REQUEST_DENIED
the switchover request for the specified domains by the current host has 
been denied

HSI_STATUS_NOT_SUPPORTED
returned if this function with the specified set of parameters is not 
supported by the infrastructure 

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function performs the switchover. It is called on a host that currently owns the specified 
domains or on some other host to request switchover of the specified domains to the destination 
host. If the parameter Reset is TRUE, the corresponding domains are initially reset after the 
switchover by the new owning host. 

6.2.5.7 RhSetHwDestinationHost

Prototype:
68 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
HSI_STATUS 
RhSetHwDestinationHost(
 IN RH_HANDLE Handle,

IN uint32 SourceHost,
 IN uint32 *pDomains,

IN uint32 DomainCount,
 IN uint32 DestinationHost,
 IN BOOLEAN Reset ); 

Arguments:

Handle – the handle of the current session

SourceHost – the number of the host for which domain destination is specified

pDomains – the array of domain numbers identifying the group of domains that is 
passed to the specified destination host if the source host fails and 
hardware-initiated switchover takes place for it

DomainCount the size of the array pDomains

DestinationHost the number of the host that owns the specified domains if the source host 
fails and hardware-initiated switchover takes place for it; value 
RH_NO_DESTINATION_HOST means “no host owns the domains”

Reset if TRUE, the PCI buses of domains are reset after the switchover

Return Value:

HSI_STATUS_SUCCESS returned in the case of success

HSI_STATUS_INVALID_PARAMETER 
invalid session handle or invalid parameters (wrong or non-existent host 
or domain numbers)

HSI_STATUS_REQUEST_DENIED 
the request for the specified domains by the current host has been denied

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function is used to specify the destination host that obtains specified domains if a hardware-
initiated switchover occurs due to the failure of the source host. In the case of such failure, domains 
owned by that host should be transferred to some other host; this function specifies the destination 
host on a per-domain group basis.

If this function is not called before the hardware-initiated switchover actually takes place, the 
domain is either passed to some predefined host or left unattached to any host. This predefined 
arrangement is specified by some entity beyond the scope of this specification (like BIOS or 
hardware default). However, the function RhGetHwDestinationHost can be used to obtain this 
predefined arrangement, even if RhSetHwDestinationHost has not yet been called for this domain/
host pair.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  69



Redundant Host API
6.2.5.8 RhGetHwDestinationHost

Prototype:

HSI_STATUS 
RhGetHwDestinationHost(
 IN RH_HANDLE Handle,

IN uint32 SourceHost,
 IN uint32 Domain,
 OUT uint32 *pDestinationHost );

Arguments:

Handle – the handle of the current session

SourceHost - the number of the source host

Domain – the domain number

pDestinationHost pointer to the variable receives the number of the host that should own 
the specified domain if the source host fails and hardware-initiated 
switchover takes place for it

Return Value:

HSI_STATUS_SUCCESS  returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle or the specified domain does not exist

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function gets the destination host that owns the specified domain if a hardware-initiated 
switchover takes place due to the failure of the source host.

6.2.6 Notification, Reporting and Alarms

6.2.6.1 RhEnableDomainStateNotification

Prototype:

HSI_STATUS 
RhEnableDomainStateNotification(
 IN RH_HANDLE Handle,
 IN RH_DOMAIN_STATE_CALLBACK DomainCallback,
 IN RH_SLOT_STATE_CALLBACK SlotCallback OPTIONAL,
 IN void *pContext );

Arguments:

Handle – the handle of the current session
70 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
DomainCallback pointer to the callback function that tracks state of the domain

SlotCallback - pointer to the optional callback function that tracks state of separate slots 
during software connection and disconnection.

pContext – an opaque context pointer; passed unchanged to the callback function.

Return Value:

HSI_STATUS_SUCCESS  returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle or the specified domain does not exist

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function establishes a callback that is called when the software connection state of one of the 
domains changes. The callback function is called with the domain number and the new state as 
parameters. Another parameter, pContext, is passed unchanged from the function that establishes 
the callback to the callback itself and can be used to pass some context information.

Four additional parameters, “RequestingHost”, “DestinationHost”, “Timeout” and “Persist,” are 
passed to the domain state notification callback when software disconnection is requested for the 
domain and the domain state becomes DISCONNECTING. They are passed unchanged from the 
parameter list for the RhPrepareForSwitchover function. 

Values of these parameters are not meaningful when the new domain state is different from 
DISCONNECTING.

The parameter SlotStateCallback, if specified as non-NULL, should be an address of the slot state 
change notification callback. This callback is called when the state of a specific slot in the domain 
changes and allows the caller to track software connection and disconnection on a per-slot basis.

This function can be used to get notification about the progress of a pending software connection or 
disconnection request during a cooperative switchover.

The function can be called on a host that does not own the specified domain.

6.2.6.2 RhEnableSwitchoverNotification

Prototype:

HSI_STATUS 
RhEnableSwitchoverNotification(
 IN RH_HANDLE Handle,
 IN RH_SWITCHOVER_CALLBACK Callback,
 IN void *pContext,
 IN BOOLEAN Systemwide);

Arguments:

Handle – the handle of the current session
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  71



Redundant Host API
Callback – pointer to the callback function 

Context – an opaque context pointer; passed unchanged to the callback function.

Systemwide – a Boolean flag; if set to TRUE, notification happens for each switchover 
even if the current host is neither the source nor the destination of the 
switchover; if set to FALSE, the host is notified only of those 
switchovers in which it participates.

Return Value:

HSI_STATUS_SUCCESS returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle or the specified domain does not exist

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function establishes the callback that is called when any domain is switched over from one 
host to another. The callback function is called with the new owner host number and the domain 
number as parameters. Another parameter, pContext, is passed unchanged from the function that 
establishes the callback to the callback itself and can be used to pass some context information.

An application may subscribe for notifications about all domain switchovers in the system by 
setting parameter Systemwide to TRUE.

6.2.6.3 RhEnableSwitchoverRequestNotification

Prototype:

HSI_STATUS 
RhEnableSwitchoverNotification(
 IN RH_HANDLE Handle,
 IN RH_SWITCHOVER_REQUEST_CALLBACK Callback,
 IN void *pContext );

Arguments:

Handle – the handle of the current session

Callback – pointer to the callback function 

pContext – an opaque context pointer; passed unchanged to the callback function.

Return Value:

HSI_STATUS_SUCCESS  returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle or the specified domain does not exist

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure
72 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function establishes the callback that is called when an attempt is made to take over any 
domain from the current host. The callback function is called with the requesting host number, new 
owning host number, and the domain number as parameters. Another parameter, pContext, is 
passed unchanged from the function that establishes the callback to the callback itself and can be 
used to pass some context information.

If the switchover request callback is called, the requested switchover isn’t successfully completed 
in hardware until the callback returns. The callback can request the infrastructure to prevent the 
requested switchover from happening by returning FALSE. In that case, the infrastructure may 
perform hostile actions to the new owning host (for example, power it off).

6.2.6.4 RhEnableUnsafeSwitchoverNotification

Prototype:

HSI_STATUS 
RhEnableUnsafeSwitchoverNotification(
 IN RH_HANDLE Handle,
 IN RH_UNSAFE_SWITCHOVER_CALLBACK Callback,
 IN void *pContext );

Arguments:

Handle – the handle of the current session

Callback – pointer to the callback function

pContext – an opaque context pointer; passed unchanged to the callback function.

Return Value:

HSI_STATUS_SUCCESS returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle or the specified domain does not exist

HSI_STATUS_NOT_SUPPORTED
returned if this function is not supported by the infrastructure

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function establishes the callback that is called when a new domain is acquired by the current 
host. In that case, some (or all) devices in the domain may be in an unsafe state. To prevent 
immediate corruption of the new owning host after the switchover, a bus lock is usually 
implemented in RH systems. This lock prevents outgoing transactions from the domain devices to 
the host and interrupts from the domain devices. However this lock should not be held for a long 
time, but should be cleared by software soon after the switchover to allow normal operation of 
domain devices.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  73



Redundant Host API
The corresponding callback can be used to handle this situation. The callback is called with the bus 
lock held. Parameters to the callback include a list of entries identifying domain devices in unsafe 
states. These devices should be reset before the domain can be software connected and the device 
drivers can be started. However, reset may not be necessary for a specific device if it is known that 
this device is harmless for the system or the device driver can bring the device into a safe state 
before the bus lock is cleared.

If registered, the callback is called after a switchover even if no devices are considered unsafe by 
the RH infrastructure. In that case, the list of entries, passed as a parameter, is empty.

The callback has the following prototype:
typedef void (*RH_UNSAFE_SWITCHOVER_CALLBACK) (
 IN uint32 Domain,
 IN RH_SWITCHOVER_TYPE SwitchoverType,
 IN BOOLEAN SlotResetSupported,
 IN uint32 UnsafeSlotCount,
 IN OUT RH_SLOT_DESCRIPTOR *pUnsafeSlotDescriptors,
 IN void *pContext );

The callback has the following parameters:

Domain - the number of the domain that has been acquired by the current host

SwitchoverType the switchover type

SlotResetSupported the Boolean flag that indicates whether the infrastructure supports per-
slot resets on the domain

UnsafeSlotCount the number of descriptors for unsafe slots provided with the call

pUnsafeSlotDescriptors the array of descriptors, each of which describes one slot that contains a 
device in unsafe state

pContext - the opaque context pointer passed unchanged from 
RhEnableUnsafeSwitchoverNotification

Each descriptor describes a device that is directly installed in a physical slot or nested below a 
physical slot in the PCI hierarchy (if the physical slot is occupied by a PCI-PCI bridge device), and 
has the following fields:

Size - this is the size of the structure including the variable-length SlotPath 
field. To get to the next structure in the array, the caller should add this 
value to the address of the current structure.

Device addressing attributes:

PhysicalSlot the number of the physical slot in the format (shelf-ID, physical-slot-ID); 
the device described by this descriptor resides in this slot or below this 
slot

PhysSlotDepth The number of bridging levels between this device and the physical slot; 
if the device occupies the physical slot, this value is 0, otherwise it 
indicates is the depth of the device below the physical slot

OwningHost is set to the number of the current host

RootBusNumber the PCI bus number of the root bus of the PCI hierarchy the device 
resides in; is 0 for single-root PCI hierarchies. This value is 16 bit to 
accommodate possible future extensions to PCI that allow more than 256 
PCI buses in the system
74 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host API
SlotPath - the slot path from the root bus to the device; represented as a null-
terminated character string

BusNumber - the bus number for the device. This value is 16 bit to accommodate 
possible future extensions to PCI that allow more than 256 PCI buses in 
the system

DeviceNumber the device number for the device

FunctionNumber the function number for the device

Device configuration attributes:

Attributes from VendorID to HeaderType represent the PCI configuration space attributes of the 
device with the same names.

The field NeedsReset has a special meaning. It is set to RESET_REQUIRED or UNKNOWN 
before the callback is called. The callback should set this field to RESET_NOT_REQUIRED or 
RESET_REQUIRED on return.

The callback should set this field to RESET_NOT_REQUIRED if it considers that no reset is 
necessary for this device before releasing the bus lock (for example, if the device can be set to a 
safe state by the device driver or is in a safe state already).

The callback should set this field to RESET_REQUIRED if it considers that the reset is necessary 
for the device.

No descriptors are submitted for empty slots or for the slots occupied by devices that the 
infrastructure considers safe for the host.

If a PCI-PCI bridge occupies some physical slot, and some devices below this bridge are in unsafe 
state, both descriptors for the bridge and for the devices below it in unsafe state are present. In the 
array, the descriptor for the bridge precedes descriptors for the devices below it.

The actions of the infrastructure after the callback returns are specified by the following rules:

• If the parameter SlotResetSupported = FALSE (the infrastructure does not support per-slot 
resets), and at least one descriptor has NeedsReset = RESET_REQUIRED, the whole domain 
is reset before releasing the bus lock.

• Otherwise, for each physical slot in the domain, if SlotResetSupported = TRUE, and there is a 
descriptor for the given physical slot in the array with NeedsReset = RESET_REQUIRED, 
this physical slot is reset.

• Otherwise, if there is a PCI-PCI bridge device in the given physical slot, and there is at least 
one descriptor in the array for a device below this bridge (or for this bridge itself) with 
NeedsReset = RESET_REQUIRED, this physical slot is reset.

As a consequence, there is no reset if the callback clears NeedsReset in all descriptors submitted to 
it.

6.2.6.5 RhDisableNotification

Prototype:
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  75



Redundant Host API
HSI_STATUS 
RhDisableNotification(
 IN RH_HANDLE Handle
 IN RH_NOTIFICATION_TYPE NotificationType );

Arguments:

Handle – the handle of the current session

NotificationType this enumeration specifies the type of notifications to disable

Return Value:

HSI_STATUS_SUCCESS  returned in the case of success

HSI_STATUS_INVALID_PARAMETER
invalid session handle 

Other, implementation-defined HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function disables the notification callback that has been previously established via one of the 
RhEnable…Notification functions. The specific type of notifications to disable is specified by the 
parameter NotificationType.
76 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Hot Swap API 7

See the Intel® NetStructure™ Hot Swap Kit for Linux 2.4 Software Manual for a detailed 
description of the provided Hot Swap API supported by this software installation. While the Hot 
Swap Kit manual is specifically tailored for a Linux installation, the Hot Swap API detailed in this 
manual is identical to the VxWorks* implementation. 
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  77



Hot Swap API
This page intentionally left blank.
78 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



IPMI API 8

8.1 imbOpenDriver

Prototype:

int imbOpenDriver(void)

Parameters:

None

Returns:

Int - 0 for Fail and 1 for Success, sets hDevice 

Description:

Establish a link to the IMB driver.

8.2 imbCloseDriver

Prototype:

void imbCloseDriver()

Parameters:

None

Returns:

None

Description:

Close a link to the IMB driver.

8.3 imbDeviceIoControl

Prototype:

static BOOL imbDeviceIoControl(
HANDLE dummy_hDevice,
DWORD dwIoControlCode, 
LPVOID lpvInBuffer, 
DWORD cbInBuffer, 
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  79



IPMI API
LPVOID lpvOutBuffer,
DWORD cbOutBuffer, 
LPDWORD lpcbBytesReturned, 
LPOVERLAPPEDlpoOverlapped

) 

Parameters:

dummy_hDevice - handle of device

dwIoControlCode - control code of operation to perform

lpvInBuffer - address of buffer for input data

cbInBuffer - size of input buffer

lpvOutBuffer - address of output buffer

cbOutBuffer - size of output buffer

lpcbBytesReturned - address of actual bytes of output

lpoOverlapped - address of overlapped struct

Returns:

BOOL - FALSE for fail and TRUE for success. Same as standard NTOS call as it 
also sets Ntstatus.status. 

Description:

Simulate NT imbDeviceIoControl using Unix calls and structures

8.4 imbSendTimedI2cRequest 

Prototype:

ACCESN_STATUS imbSendTimedI2cRequest (
I2CREQUESTDATA *pI2CReq,
Int timeOut,
BYTE * pRespData,
int * pRespDataLen,
BYTE * pCompCode

)

Parameters:

pI2Creq - I2C request

timeOut - how long to wait, mSec units

respDataPtr - where to put response data

respDataLen - size of response buffer/size of returned data

completionCode - request status from xMC

Returns:
80 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



IPMI API
ACCESN_STATUS - ACCESN_OK else error status code

Description:

Sends a request to an I2C device

8.5 imbSendIpmiRequest

Prototype:

ACCESN_STATUS imbSendIpmiRequest (
IMBPREQUESTDATA *pImbReq,
BYTE *  pRespData,
int * pRespDataLen,
BYTE * pCompCode,
BOOL bWaitForResponse

)

Parameters:

pImbReq, - request info and data

pRespData, - where to put response data

pRespDataLen, - how much response data there is

pCompCode, - request status from destination controller

bWaitForResponse - Wait for a response

Returns:

ACCESN_STATUS ACCESN_OK else error status code

Description:

Sends a request to an I2C device

8.6 imbGetAsyncMessage

Prototype:

ACCESN_STATUS imbGetAsyncMessage (
ImbRespPacket *pMsg,
DWORD *pMsgLen, 
ImbAsyncSeq *pSeqNo

)

Parameters:

pMsg - response packet 

pMsgLen - IN - length of buffer, OUT - msg len

pSeqNo - previously returned sequence number (or ASYNC_SEQ_START)
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  81



IPMI API
Returns:

ACCESN_STATUS - ACCESN_OK else error status code

Description:

This function gets the next available async message with a message ID greater than SeqNo. The 
message looks like an IMB packet and the length and Sequence number are returned

8.7 imbIsAsyncMessageAvailable

Prototype:

ACCESN_STATUS imbIsAsyncMessageAvailable (unsigned int eventId)

Parameters:

eventId - EventID handle returned from imbRegisterForAsyncMsgNotification

Returns:

ACCESN_STATUS - ACCESN_OK when message available else error status code

Description:

This function waits for an Async Message to arrive in the queue. It blocks indefinitely until a 
message arrives.

8.8 imbRegisterForAsyncMsgNotification

Prototype:

ACCESN_STATUS imbRegisterForAsyncMsgNotification (unsigned int *handleId)

Parameters:

eventId - EventID handle returned once registered

Returns:

ACCESN_STATUS - ACCESN_OK else error status code

Description:

This function registers the calling application for Asynchronous notification when an SMS 
message is available with the IMB driver.

8.9 imbUnregisterForAsyncMsgNotification

Prototype:
82 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



IPMI API
ACCESN_STATUS imbUnregisterForAsyncMsgNotification (unsigned int *handleId)

Parameters:

eventId - EventID handle to unregister

Returns:

ACCESN_STATUS - ACCESN_OK else error status code

Description:

This function unregisters the calling application for Asynchronous notification when an SMS 
message is available with the IMB driver.

8.10 imbGetLocalBmcAddr

Prototype:

ACCESN_STATUS imbGetLocalBmcAddr (BYTE *iBmcAddr)

Parameters:

iBmcAddr - OUT - value of current local BMC address

Returns:

ACCESN_STATUS - ACCESN_OK else error status code

Description:

This function gets the local xMC Address as determined by the driver init

8.11 imbSetLocalBmcAddr

Prototype:

ACCESN_STATUS imbSetLocalBmcAddr (BYTE iBmcAddr)

Parameters:

iBmcAddr - IN - value of current local xMC address

Returns:

ACCESN_STATUS - ACCESN_OK else error status code

Description:

This function is used when the xMC does not support the PICMG 2.16 GetAddressInfo IPMI 
command to force the local xMC Address.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  83



IPMI API
8.12 imbGetIpmiVersion

Prototype:

BYTE imbGetIpmiVersion()

Parameters:

None

Returns:

BYTE - Current determined IPMI version

Description:

This function is returns the current IPMI version as either IPMI_09_VERSION, 
IPMI_10_VERSION, or IPMI_15_VERSION
84 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Slot Control API 9

9.1 HsiOpenSlotControl

Prototype:

HSI_STATUS 
HsiOpenSlotControl(
 OUT HSI_SLOT_CONTROL_HANDLE *pHandle);

Arguments:

PHandle - pointer to the location where this function places the session handle for 
the new session

Return Value:

HSI_STATUS_SUCCESS
if successful 

HSI_STATUS_NO_MEMORY
returned if there is not enough memory to allocate the handle or other 
internal structures

HSI_STATUS_NO_SUCH_DEVICE 
returned if the Hot Swap Controller can’t be found

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function is called by the client to open a logical session between the client and the HA Slot 
Control Driver. The session handle is returned to the client from this function. In all of the 
following calls related to the new session, the session handle shall be passed as one of the 
parameters.

This function shall be called before calling any other functions of this interface.

9.2 HsiCloseSlotControl 

Prototype:

HSI_STATUS 
HsiCloseSlotControl(
 IN HSI_SLOT_CONTROL_HANDLE Handle);

Arguments:

Handle - The session handle to close
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  85



Slot Control API
Return Value:

HSI_STATUS_SUCCESS 
if successful

HSI_STATUS_INVALID_PARAMETER
returned if the handle passed as a parameter is invalid

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function is called by a client to terminate a logical session between the client and the Hot 
Swap Controller driver, established by the call to HsiOpenSlotControl(). Upon return, the handle is 
no longer valid.

9.3 HsiGetSlotCount 

Prototype:

HSI_STATUS 
HsiGetSlotCount(
 IN HSI_SLOT_CONTROL_HANDLE Handle, 
 OUT UINT32 *pCount)

Arguments:

Handle - The handle of the current session

pCount - Pointer to the location where the number of physical slots is placed

Return Value:

HSI_STATUS_SUCCESS 
if successful

HSI_STATUS_INVALID_PARAMETER 
returned if the handle passed as a parameter is invalid

Other HSI_STATUS values 
returned if other errors occurred during execution of this function

Synopsis:

A client calls this function to retrieve the number of physical slots managed by the Hot Swap 
Controller. The physical slots are the same as geographical CompactPCI addresses and are 
numbered from 1 to this number, inclusive. However, the slot numbers need not be consecutive; 
there may be gaps in the sequence of physical slot numbers.

9.4 HsiGetBoardPresent 

Prototype:
86 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Slot Control API
HSI_STATUS 
HsiGetBoardPresent(
 IN HSI_SLOT_CONTROL_HANDLE Handle,
 IN UINT32 Slot,
 OUT BOOLEAN *pPresent )

Arguments:

Handle - The handle of the current session

Slot - The physical slot number

pPresent - Pointer to the location where the board presence flag is placed: TRUE 
means a board is present in the slot; FALSE means no board is present in 
the slot

Return value:

HSI_STATUS_SUCCESS 
if successful

HSI_STATUS_INVALID_PARAMETER
returned if the physical slot number does not correspond to any actual 
slot or if the handle is invalid

HSI_STATUS_NO_DATA_DETECTED 
returned if the board presence status cannot be currently determined (the 
slot is powered)

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function detects whether any board is present in the specified slot and returns the board 
presence status in the pPresent parameter. TRUE is returned if a board is present in the slot; FALSE 
is returned if no board is present in the slot.

Note: According to the Hot Swap Specification, if the slot power is on, it is not possible to detect whether 
the slot is occupied; this function returns status HSI_STATUS_NO_DATA_DETECTED in this 
case.

9.5 HsiGetBoardHealthy 

Prototype:

HSI_STATUS 
HsiGetBoardHealthy(
 IN HSI_SLOT_CONTROL_HANDLE Handle,
 IN UINT32 Slot,
 OUT BOOLEAN *pHealthy );

Arguments:

Handle - The handle of the current session
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  87



Slot Control API
Slot - The physical slot number

pHealthy - Pointer to the location where the board health status is placed: TRUE 
means the board is present and healthy; FALSE means the board is not 
healthy

Return value:

HSI_STATUS_SUCCESS 
if successful

HSI_STATUS_INVALID_PARAMETER
returned if the physical slot number does not correspond to any actual 
slot or if the handle is invalid

HSI_STATUS_NO_DATA_DETECTED
returned if the board health status cannot be currently determined (the 
slot is not powered)

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function detects the health status of the board in the specified slot and returns it in the 
pHealthy parameter as a logical value. TRUE means the board is present and healthy; FALSE 
means the board is either not healthy or absent.

Note: The board health status cannot be determined if the slot power is off; this function returns status 
HSI_STATUS_NO_DATA_DETECTED in this case.

9.6 HsiGetSlotPower 

Prototype:

HSI_STATUS 
HsiGetSlotPower(
 IN HSI_SLOT_CONTROL_HANDLE Handle,
 IN UINT32 Slot,
 OUT BOOLEAN *pPower );

Arguments:

Handle - The handle of the current session

Slot - The physical slot number

pPower - Pointer to the location where the slot power status is placed: TRUE 
means the slot power is on; FALSE means the slot power is off

Return Value:

HSI_STATUS_SUCCESS 
if successful
88 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Slot Control API
HSI_STATUS_INVALID_PARAMETER
returned if the physical slot number does not correspond to any actual 
slot or if the handle is invalid

Other HSI_STATUS values 
returned if other errors occurred during execution of this function

Synopsis:

This function detects the power status of the specified slot and returns it in the pPower parameter as 
a logical value: TRUE means the slot power is on; FALSE means the slot power is off.

9.7 HsiSetSlotPower 

Prototype:

HSI_STATUS 
HsiSetSlotPower(
 IN HSI_SLOT_CONTROL_HANDLE Handle,
 IN UINT32 Slot, 
 IN BOOLEAN Power );

Arguments:

Handle - The handle of the current session

Slot - The physical slot number

Power - The new power state for the slot: TRUE means ON, FALSE means OFF

Return Value:

HSI_STATUS_SUCCESS 
if successful

HSI_STATUS_INVALID_PARAMETER
returned if the physical slot number does not correspond to any actual 
slot or if the handle is invalid

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function enables or disables power for the specified slot. The new power state of the slot is 
specified by the value of the parameter Power: TRUE means switch the power on; FALSE means 
switch the power off.

9.8 HsiGetSlotReset 

Prototype:
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  89



Slot Control API
HSI_STATUS 
HsiGetSlotReset(
 IN HSI_SLOT_CONTROL_HANDLE Handle,
 IN UINT32 Slot, 
 OUT BOOLEAN *pReset );

Arguments:

Handle - The handle of the current session

Slot - The physical slot number

pReset - Pointer to the location where the slot reset status is placed: TRUE means 
the slot is in the reset state; FALSE means the slot is not in the reset state

Return Value:

HSI_STATUS_SUCCESS
if successful

HSI_STATUS_NOT_IMPLEMENTED 
returned if slot reset functionality is not implemented for the given 
platform

HSI_STATUS_INVALID_PARAMETER
returned if the physical slot number does not correspond to any actual 
slot or if the handle is invalid

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function detects the reset status of the specified slot and returns it in the pReset parameter as a 
logical value: TRUE means the slot is in the reset state; FALSE means the slot is not in the reset 
state.

This function is optional for the Hot Swap Controller; if it is not implemented by the hardware, 
HSI_STATUS_NOT_SUPPORTED is returned.

9.9 HsiSetSlotReset 

Prototype:

HSI_STATUS 
HsiSetSlotReset(
 IN HSI_SLOT_CONTROL_HANDLE Handle,
 IN UINT32 Slot, 
 IN BOOLEAN Reset );

Arguments:

Handle - The handle of the current session

Slot - The physical slot number
90 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Slot Control API
Reset - The new reset state for the slot: TRUE means the slot is placed in the 
reset state; FALSE means the slot is taken out of the reset state

Return Value:

HSI_STATUS_SUCCESS 
if successful

HSI_STATUS_NOT_IMPLEMENTED
returned if slot reset functionality is not implemented for the given 
platform

HSI_STATUS_INVALID_PARAMETER 
returned if the physical slot number does not correspond to any actual 
slot or if the handle is invalid

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function sets the reset status for the specified slot. The reset status is specified by the Reset 
parameter: TRUE means assert reset to the slot; FALSE means de-assert reset to the slot.

Reset is considered a state rather than an action: that is, if a board is put into the reset state, it 
remains in the reset state until it is taken out of the reset state.

This function is optional for the Hot Swap Controller; if it is not implemented by the hardware, 
HSI_STATUS_NOT_SUPPORTED is returned.

9.10 HsiGetSlotM66Enable 

Prototype:

HSI_API_DEF HSI_STATUS 
HsiGetSlotM66Enable(
 IN HSI_SLOT_CONTROL_HANDLE Handle,
 IN UINT32 Slot, OUT BOOLEAN *pM66Enable )

Arguments:

Handle - the handle of the current session

Slot - the physical slot number

pM66Enable - pointer to the location where the state of the M66EN line for the 
specified slot is placed (TRUE: 66 MHz operation is enabled for the slot; 
FALSE: 66 MHz operation is not enabled for the slot).

Return Value:

HSI_STATUS_SUCCESS
if successful

HSI_STATUS_NOT_IMPLEMENTED
returned if slot reset functionality is not implemented for the given 
platform
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  91



Slot Control API
HSI_STATUS_INVALID_PARAMETER 
returned if the physical slot number does not correspond to any actual 
slot or if the handle is invalid

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function detects the state of the M66EN signal line for the specified slot (reflecting whether 
66 MHz operation is enabled for the specified slot) and returns it in the pM66Enable parameter as a 
logical value: TRUE means that the signal is asserted (66 MHz operation is enabled for the slot); 
FALSE means that the signal is deasserted (66 MHz operation is not enabled for the slot). 

This functionality is optional for the Hot Swap Controller; if it is not supported by the hardware, 
HSI_STATUS_NOT_SUPPORTED is returned. 

9.11 HsiSetSlotM66Enable 

Prototype:

HSI_API_DEF HSI_STATUS 
HsiSetSlotM66Enable(
 IN HSI_SLOT_CONTROL_HANDLE Handle,
 IN UINT32 Slot, IN BOOLEAN pM66Enable )

Arguments:

Handle - The handle of the current session.

Slot - The physical slot number.

M66Enable - The Boolean parameter that controls the state of the M66EN line for the 
specified slot (TRUE: M66EN is not driven for the slot by the Hot Swap 
Controller; FALSE: M66EN is driven low for the slot by the Hot Swap 
Controller, disabling 66 MHz operation).

Return Value:

HSI_STATUS_SUCCESS 
if successful

HSI_STATUS_NOT_IMPLEMENTED
returned if slot reset functionality is not implemented for the given 
platform

HSI_STATUS_INVALID_PARAMETER
returned if the physical slot number does not correspond to any actual 
slot or if the handle is invalid

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:
92 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Slot Control API
This function controls the state of the M66EN signal line for the specified slot (reflecting whether 
or not 66 MHz operation is enabled for the specified slot), depending on the value of the parameter 
M66Enable. M66Enable = TRUE means that the signal line is not driven by the Hot Swap 
Controller (potentially enabling 66 MHz operation for the slot); M66Enable = FALSE means that 
the signal is driven low by the Hot Swap Controller (disabling 66 MHz operation for the slot).

9.12 HsiSetSlotEventCallback 

Prototype:

HSI_STATUS 

HsiSetSlotEventCallback(

 IN HSI_SLOT_CONTROL_HANDLE Handle,
 IN HSI_SLOT_EVENT_CALLBACK Callback, 
 IN void *pContext )

Arguments:

Handle - The handle of the current session

Callback - Address of the callback function that is called in the case of a Hot Swap 
Control event. Pass NULL to cancel the callback registration.

pContext - Opaque context pointer. This value is passed unchanged to the callback 
function.

Return Value:

HSI_STATUS_SUCCESS 
if successful

HSI_STATUS_INVALID_PARAMETER
returned if the arguments or handle is invalid

HSI_STATUS_NOT_SUPPORTED
returned if slot event functionality is not implemented for the given 
platform

Other HSI_STATUS values
returned if other errors occurred during execution of this function

Synopsis:

This function registers or unregisters a client callback function that is called by the HA Slot 
Control Driver in the case of one of the following events:

• State of one of the slots changes: a board is inserted or extracted, board health state changes, 
etc.

• Hardware error is detected in the Hot Swap Controller.

To register the callback, the client should call this function with a valid, non-zero callback address 
and an opaque context pointer. To unregister the callback, the client should call this function with 
NULL as the callback address; the context pointer is ignored in that case and may be any value.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  93



Slot Control API
The callback function has the following prototype:

VOID (*HSI_SLOT_EVENT_CALLBACK)(
 IN void *pContext,
 IN BOOLEAN HscError,
 IN HSI_SLOT_EVENT_INFO *pSlotInfo );

The arguments have the following semantics:

pContext - Opaque context pointer. This is the same value that was originally passed 
to HsiSetSlotEventCallback().

HscError - The value TRUE indicates that a hardware error has been detected in the 
Hot Swap Controller, and FALSE indicates a state change in one of the 
slots.

pSlotInfo - If HscError is FALSE, this argument is the pointer to the structure that 
contains the slot number and the new state of the slot that has changed 
its state. If HscError is TRUE, the value of this argument is reserved and 
undefined.

The slot event information structure is defined as follows.

typedef struct 
HSI_SLOT_EVENT_INFO_STRUCT
{
 UINT32 SlotNumber;
 BOOLEAN Present;
 BOOLEAN Powered;
 BOOLEAN Healthy;
 BOOLEAN InReset;
} HSI_SLOT_EVENT_INFO;

with the fields specified as:

SlotNumber - the number of the slot that has changed its state

Present - the board presence status for the slot

Powered - the power status for the slot

Healthy - the health status for the board in the slot

InReset - the reset status of the slot

Note: If Powered is TRUE, the value for Present is not valid, and that if Powered is FALSE, the value for 
Healthy is not valid.

This function shall be implemented as part of the HA Slot Control Interface on platforms where the 
Hot Swap Controller can automatically detect and signal the occurrence of slot status changes.
94 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Demonstration Utilities 10

The purpose of the demonstration utility is to demonstrate and expose the main functionality and 
features of the HSSDK driver set, the Application Programming Interface (API) and the Redundant 
Host (RH) capabilities of the ZT 5524 System Master CPU board. It also serves as a test tool for 
exercising the APIs while acting as a programming tutorial. The functional interfaces are listed 
below:

• RH API exercising

• Hot Swap API exercising

• Inter-host communications mechanism

• Fault Configuration

• Switchover Management

• Any extra exposed status and control that is not covered in the previously mentioned APIs

10.1 Functional Description

The architecture of the RHDemo application is represented by five major functional blocks: 

• User interface

• RH interface

• IPMI interface

• Hot swap interface 

• Slot control interface

These are described in the following topics. 

10.1.1 User Interface

The user interface is based on a command line interface and is menu driven. Enter a number and 
press Enter to make a selection. Press M to go to the main menu, press B to go back to the previous 
menu, and press Q to quit the demo.

10.1.2 RH Interface

The RADemo exercises the Redundant Host functionality exposed via the RH interface. It supports 
the PICMG 2.12 RH API. This should also be sufficient to exercise the functionality in the ZT 
5524 RSS System Master board. The ZT 5524 is dynamic enough to function in multiple mode 
host-domain ownership configurations. The multiple modes are: 

• Active/Standby

• Active/Active
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  95



Demonstration Utilities
• Cluster

A Standby Host is a host that does not control a bus domain. A Standby Host is referred to as being 
in Standby mode. An Active Host is a host that owns at least one bus segment. Functionality such 
as software initiated handovers, hardware initiated failovers, switchovers, event reporting and 
alarms are exercised.

10.1.2.1 Software Initiated Handovers

Software initiated handovers allow an active system master board to switch over to the backup host 
through application software intervention. This allows the user to perform preventative 
maintenance or software upgrades to one host without shutting down the entire system. During a 
handover, the device drivers are allowed to quiesce activity to the devices and synchronize state 
information to allow an orderly transition of a bus segment.

10.1.2.2 Hardware Initiated Failovers

Hardware initiated failovers occur when a catastrophic failure occurs on the active system master 
board. The active host can then failover to the backup host or the backup host can perform a 
takeover so that interruptions to system operation are minimized. Examples of catastrophic failures 
are a software watchdog timeout or a detected voltage spike that may render the CPU unstable. 
These events warrant a hardware-initiated failover.

10.1.2.3 Multiple Mode Capabilities

10.1.2.3.1 Active/Standby Mode

The Active/Standby mode is the standard Redundant Host configuration. This mode allows only 
one system master CPU board to have visibility to all backplane bus segments and all the 
connected PCI devices. This mode requires that the standby system master CPU board be 
electrically disconnected from the backplane at the PCI-to-PCI Bridge. A PCI spoofing mechanism 
is required for proper operation. The spoofing mechanism allows the standby host to access the PCI 
configuration space of backplane devices without having direct access to the devices. If a host fails 
and requires a takeover, one of the hosts initiates a handover or failover and upon completion the 
roles of active and standby hosts are reversed.

10.1.2.3.2 Active/Active Mode

Active/Active mode configuration allows each board segment to control a single bus segment. 
Each system master CPU board controls the clock and arbitration for its controlled or owned bus 
segment. It is through the PCI spoofing mechanism that each system master has visibility to the bus 
segment and the devices that are owned by the redundant host. In this mode if one host fails then 
the redundant host can take ownership of the relinquished bus segment.

10.1.2.3.3 Cluster Mode

Cluster mode is a variant on the Active/Active host mode. In Cluster mode if either host fails then 
the bus assigned to the failed host is unavailable for ownership transference. This is referred to as 
bus locking. While a system is dynamically capable of transitioning between Active/Standby and 
Active/Active modes, and even into a Cluster mode, it is only through a system power cycle that a 
system can transition out of Cluster mode. This is due to the fact that a locked bus segment may not 
have PCI spoofing information consistent across multiple host domains.
96 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Demonstration Utilities
10.1.2.4 Switchover Functions

The RHDemo exposes the following functionality:

• Prepare for Switchover

• Cancel Prepare for Switchover

• Get Domain Software Connection Status

• Get Slot Software Connection Status

• Perform Switchover

• Set Hardware Concession Host

• Get Hardware Concession Host

10.1.2.5 Host Domain Enumeration and Association 

The RHDemo enumerates hosts and domains, reports host-domain associations and returns useful 
data on the domains, hosts and slots. It covers the following functions:

• Get Domain Count 

• Get Domain Numbers 

• Get Domain Ownership

• Get Domain Slot Path

• Get Domain Slot Count

• Get Domain Slots

• Get Slot Domain

• Get Current Host Number

• Get Host Count

• Get Host Numbers

• Get Host Name

• Get Host Availability

• Get Domain Availability to Host

10.1.2.6 Slot Information

The RHDemo returns the following device information on the system slots:

• Physical slot information 

• Slot Child Information

10.1.2.7 Notification, Reporting and Alarms

The RHDemo reports the following switchover notifications, alarms and other events:

• Enable Domain State Notification 

• Enable Switchover Notification 
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  97



Demonstration Utilities
• Enable Switchover Request Notification 

• Enable Unsafe Switchover Notification 

• Disable Notification 

10.1.3 IPMI Interface

The IPMI interface is an important element of the RSS system architecture. It is used extensively 
for system management and inter-chassis communications:

• Access 

• Configure

• System management 

• Fault configuration and management

• Isolation strategies 

• Inter-host communications

The IPMI interface exercises the following IPMI API, fault configuration and system management 
functions:

Get Temperature Sensor Status/Thresholds - Gets the temperature sensor status and readings.

Set Temperature Sensor Status/Thresholds - Sets the temperature sensor status and thresholds.

Get Voltage Sensor Status/Thresholds - Gets the voltage sensor status and readings.

Set Voltage Sensor Status/Thresholds - Sets the voltage sensor status and thresholds.

10.1.3.1 Fault Configuration

The RHDemo performs the following fault configuration activities:

• Upper/Lower non-critical threshold

• Upper/Lower critical threshold

• Upper/Lower non-recoverable threshold

10.1.3.2 Isolation Strategy

The RHDemo executes one of the following isolation strategies, depending on the occurring event:

• Alert

• Power Off

• Reset

• Power Cycle

• OEM Action

• Diagnostic Interrupt (NMI)
98 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Demonstration Utilities
10.1.4 Hot Swap Interface

The basic purpose of the CompactPCI hot swap functionality is to allow orderly insertion or 
extraction of CompactPCI boards without affecting operation of the system involved. The hot swap 
interface in this demo operates under Linux* and VxWorks*. The current demo version does not 
support hot swap functionality. However, this new HS module does demonstrate manipulation of 
the Hot Swap API (HS API).

10.1.4.1 HS Functional Description

The HS module exercises/simulates these capabilities:

1. Hot swap board insertion

2. Hot swap board extraction

3. Slot information retrieval

4. PCI tree information retrieval

5. Catching and printing of notification messages

10.1.4.1.1 Hot Swap Board Insertion

Hot swap board insertion can be simulated by the demo application. When this is performed, the 
operating system looks for drivers that can be installed for this new device. The following two files 
contain information about PCI devices and their drivers:

/lib/modules/2.4.18-rh/modules.dep

/lib/modules/2.4.18-rh/modules.pcimap

The file modules.pcimap has a more complicated structure than modules.dep. This file specifies the 
PCI configuration information identifying a particular board and the specific driver module to load 
for it.

10.1.4.1.2 Hot Swap Board Extraction

Hot swap board extraction can be simulated by the demo application. In Linux, the software 
disconnection request cannot be vetoed by a functional driver or by an application. However the 
board cannot be extracted if it is controlled by a legacy driver (a driver that does not conform to the 
current model for PCI drivers, introduced in the 2.4 kernel).

10.1.4.1.3 Slot Information Retrieval

If this functionality is performed, information on the board is retrieved based on the slot path. The 
type of information retrieved from the selected PCI device is described in chapter 9, “High 
Availability Slot Control Interface,” in the PICMG 2.12 CompactPCI Hot Swap Infrastructure 
Interface Specification. For more details on PICMG, see Section H.1, “CompactPCI” on page 131.

10.1.4.1.4 PCI Tree Information Retrieval

When this functionality is executed, the related API call returns a list of PCI devices available on 
the system. Flags are set for each device to determine its state at that particular time. See the “PCI 
Tree Information Retrieval Flags” table.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  99



Demonstration Utilities
The following information is displayed:

• Slot path

• Vendor ID

• Device ID

• SubsystemVendor ID

• SubsystemDevice ID

• Class code D

• Sub class code

• Programming interface

• Header type

• Flag

10.1.4.1.5 Catching and Printing Notification Messages

This demo application covers the capability of catching and printing notification messages sent by 
HSSD when an event is triggered. The following event types are supported. The flags supported 
are defined in the “Event Notification” topic of the Intel® NetStructureTM Hot Swap Kit for 
Linux 4.2 software manual. For details on obtaining this manual, see Section H.2, “User 
Documentation” on page 131.

10.1.4.2 Slot Information Structure

The slot information structure contains information about a specific slot, identified by a slot path. It 
includes the following pieces of information:

• Path to the slot

• Current bus number, slot number and function number of the slot

• Physical slot number

• Physical slot depth

Table 3. PCI Tree Information Retrieval Flags

Flags Meanings

PRES Device is present.

CONN Device is software connected.

CONF Device’s software connection failed.

Table 4. Events that Generate Notification Messages

Event types Meanings

EXTR REQ Device extraction request.

EXTR CONF Device extraction confirmed.

REMOVAL Device removed.

INSERTION Device inserted.
100 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Demonstration Utilities
• Slot state flags

If the slot is not empty, the following fields are also present:

• Vendor ID

• Device ID

• Subsystem vendor ID

• Subsystem ID

• Revision ID

• Class, subclass, programming interface

• Header type

• HS-CSR, if any

10.1.4.3 Slot State

When the slot information structure is filled in as a result of a call, the HsStateFlags field contains 
a set of flags representing the current state of the slot. The following flags are defined:

10.1.5 Slot Control Interface

Slot control capability is defined in the Redundant Host System Model, where the capabilities of 
the system are extended to allow software control of a board’s hardware connection state. 

The system software adds drivers and services for this greater degree of control. This allows 
software to electrically isolate the board from the system until an operator is available to do so 
physically. 

• Slot control enables: 

• Capability to perform reset on the board

• Change the board’s power state to ON 

• Checks the presence and health of the board

Table 5. Slot State Flags

Flags Meanings

HS_STATE_DEVICE_PRESENT A device is present in the slot

HS_STATE_SW_CONNECTED A device is present in the slot and software connected

HS_STATE_EXTRACTION_PENDING Extraction request pending for the device in the slot

HS_STATE_READY_FOR_EXTRACTION Device is ready for extraction, the blue LED is lit
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  101



Demonstration Utilities
102 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Software Installation
Software Installation A

A.1 Linux

The Redundant Host software package in Linux is broken out into two RPM packages. To achieve 
full Hot Swap Redundant Host capability, both packages must be installed. The packages can be 
installed individually if only specific functionality is required. In order for the Redundant Host 
functionality to be enabled properly the Hot Swap Kit for Linux must first be installed. See the 
Intel® NetStructure™ Hot Swap Kit for Linux 2.4 Software Manual for installation/setup 
instructions.

The Linux kernel, versions 2.4.18 (RedHat 7.2), provide capabilities for dynamically loading and 
unloading drivers, allowing dynamic insertion and removal of devices in a computer system 
without stopping the system. However, there is no built-in support in the operating system for 
dynamic insertion and removal of CompactPCI devices. Additional software, provided within the 
Hot Swap Kit for Intel NetStructure Processor Boards, collaborates with the system to provide hot 
swap support for CompactPCI. The core of the Redundant Host Software Kit is to provide the 
functionality required for Ultra-Quick switchovers with minimal loss of system serviceability.

The rest of this section details the installation and setup procedure for the Redundant Host 
Software Kit for Linux.

A.2 Installing the Redundant Host Software Kit

The Redundant Host Software Kit is packaged as an SRPM (Source Red Hat Package Manager) 
module:

CompactPCI-RH-1.0-1.src.rpm

This SRPM includes kernel patches, the RHSK drivers and utilities, and an RPM spec file that can 
be used to build a binary RPM module.

The RHSK requires that the kernel sources be patched and rebuilt. The RHSK drivers and utilities 
depend upon, and are closely matched with, the kernel version against which they were built. For 
this reason, it is not practical to distribute a binary RPM that includes both a pre-built kernel and 
collection of RHSK drivers and utility binaries.

Instead, this section describes the steps that should be performed at the end-user site to perform the 
kernel patching and the RHSK driver and utility recompilation.

The end-user may build a binary RPM that is specific to their hardware environment; the steps 
below provide instructions for accomplishing this. This binary RPM simplifies RHSK installation 
on other similar hardware (that is, it can be used instead of the SRPM).

The following provides a top-level view of the steps required to install the HSK SRPM, make local 
customizations, and produce a binary RPM for installing a site-specific, HSK-enabled Linux 
system:

1. Install the SRPM
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  103



Software Installation
2. Patch and rebuild the kernel with Redundant Host Support, then copy this kernel image to the /
usr/src/redhat/BUILD/CompactPCI-RH-1.0/kernel_patches directory as “linux-<kernel-
version>” (for example, “linux-2.4.18”). The binary RPM spec includes this kernel image.

3. Make any appropriate edits to the RHSK configuration files

4. Reboot

A.3 Installing RH Source RPM

A.3.1 Source Installation

Make sure you have administrator login privileges:
bash# rpm –iv CompactPCI-RH-1.0-1.src.rpm

bash# rpm -bp /usr/src/redhat/SPECS/CompactPCI-RH.spec

This will create:

/usr/src/redhat/SPECS/CompactPCI-RH.spec

/usr/src/redhat/SOURCES/CompactPCI-RH-1.0.tgz

/usr/src/redhat/BUILD/CompactPCI-RH

/usr/src/linux-<kernel-version>.rh.patch (for example, /usr/src/linux-
2.4.18.rh.patch)

A.3.2 Patching and Rebuilding an RH-Enabled Kernel

The SRPM includes several kernel patch files, one for each <kernel-version> with the following 
format: 
linux-<kernel-version>.patch

for example, 

linux- 2.4.18.rh.patch

These are located in the /usr/src directory after the “rpm -bp” command is issued. The patch files 
contain modifications needed to make a standard Linux <kernel-version> redundant host capable. 
The patch file(s) can be applied to the kernel sources downloaded from www.kernel.org. The 
following topics show how to patch and rebuild the kernel for Linux kernels <kernel-version>.

A.3.3 Patching Linux with Kernel <kernel-version>

bash# cd /usr/src

bash# patch –d <kernel-directory>-p0 < linux-<kernel-version>.rh.patch

bash# cd linux-<kernel-version>

bash# make menuconfig

Note: You must enable the “CONFIG_HA_PCI_HOT_SWAP” option for the HSK to be enabled. This 
configuration option is enabled when enabling “CPCI Hot Swap PICMG 2.1/2.12 Support (NEW)” 
found in the General Setup section. Once CPCI Hot Swap support is enabled then the 
CONFIG_PCI_HA_HOT_SWAP_ZT5523_ZT5524 ServerWorks chipset support should be 
enabled. To enable full support for the Redundant Host architecture, both CONFIG_IPMI, and 
104 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  

http://www.kernel.org


Software Installation
CONFIG_RH options also must be enabled. The Redundant Host Software is dependant on both 
the Hot Swap support and IPMI drivers to be enabled.
bash# make dep

bash# make install

bash# make modules

bash# make modules.dep

A.3.4 Making RH Configuration Changes

Make any required changes to the following files located under the /usr/src/redhat directory (see 
Section A.4, “Configuring the Redundant Host Infrastructure” on page 105 for more information):

To build the modules listed above, simply go to the top level build source directory (in this case the 
BUILD/CompactPCI-RH-1.0 directory) and use the “make all” command at the command line 
prompt.

A.4 Configuring the Redundant Host Infrastructure

A.4.1 /lib/modules/priBptd.o

The priBptd.o is a loadable backplane device driver that can be used in conjunction with the 
ZT 5541 peripheral system master board to test out the Redundant Host Infrastructure 
configurations. See the readme file that accompanies this driver to find out how to fully use it to 
exercise your system configuration.

A.4.2 /lib/modules/slotcntrl.o

The slotcntrl.o is a loadable slot control driver that is used in association with the Intel NetStructure 
ZT 7102 Chassis Management Module. This driver provides access to Hot Swap Backplane 
Peripheral Device Control. In addition, this driver provides complete IPMI access to the Chassis 
Management Module. See the Intel® NetStructureTM ZT 7102 Chassis Management Module 
manual for a detailed description of the capabilities and configuration of this board. To install this 
driver, type the following command: 
insmod -f /lib/modules/misc/slotcntrl.o

BUILD/CompactPCI-RH-1.0/
BpTestDrv 

Backplane driver 
(see “/lib/modules/misc/priBptd.o”)

BUILD/CompactPCI-RH-1.0/SlotCntrlDrv Slot Control driver 
(see “/lib/modules/misc/slotcntrl.o”)

BUILD/CompactPCI-RH-1.0/lib API Shared Libraries 
(see “/CompactPCI-RH-1.0/app/lib”)

BUILD/CompactPCI-RH-1.0/bin System Service and RH Demo 
(see “/CompactPCI-RH-1.0/app/bin”)
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  105



Software Installation
A.4.3 /CompactPCI-RH-1.0/app/lib

After building all the projects in the application subdirectory, this directory contains the following 
shared object modules and library:

• libIpmiApi.so

• libRhApi.so

• libSlotCntrlApi.so

• libBrandsHatch.a

The shared object modules provide dynamically linkable access to the exposed IPMI, Redundant 
Host, and Slot Control APIs, while the library provides a statically linkable entity for the 
Redundant Host applications. In order for Linux to find the shared object files, the /etc/ld.so.conf 
file must contain the path to these object files, and the Linux ldconfig must be executed.

A.4.4 /CompactPCI-RH-1.0/app/bin

After building all the projects in the application subdirectory, this directory contains the following 
applications:

• rhInit

• rhDemo

The rhInit application is a program that is run and exits immediately. rhInit reads the hssd.conf file 
so that it can associate the physical slot to slot-path and pass this information down to the RH 
kernel infrastructure.

If this application is not run before an application that accesses slot-path information is run, then 
the slot-path related APIs will not return the correct data. The rhDemo is a demo application that 
exercises the exposed Redundant Host Software functionality. See Chapter 10, “Demonstration 
Utilities,” for more detailed information.

A.5 VxWorks (Tornado II Setup)

For information specific to the installation and setup of the VxWorks Tornado Board Support 
Package, refer to the Board Support Package for CompactPCI Software Manual and the 
WindRiver* VxWorks Programmer’s Guide. For more information on obtaining documentation, 
see Section H.2, “User Documentation” on page 131.

The Redundant Host Option is enabled in a similar manner as enabling any other Tornado 
Workspace* option.
106 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host Function Return Values B

HSI_STATUS_SUCCESS The specified operation completed 
successfully.

HSI_STATUS_BUS_NOT_FOUND The operation failed because the 
required bus was not found.

HSI_STATUS_BUS_RESET The operation failed because the 
required bus was in reset.

HSI_STATUS_BUS_SEG_NOT_CONTOLLED The operation failed because the 
required bus segment was not 
controlled by the local Host.

HSI_STATUS_BUSY The operation failed because the 
device was busy with some other 
operation.

HSI_STATUS_CANNOT_EXTRACT_LOCAL_DEVIC
E

The system detected a command 
attempting to extract a device that 
resides on the local system master 
PCI bus. This is an illegal operation.

HSI_STATUS_CANNOT_INSERT_LOCAL_DEVICE The system detected a command 
attempting to insert a device onto 
the local system master PCI bus. 
This is an illegal operation.

HSI_STATUS_DEVICE_ALREADY_EXISTS The Redundant Host driver detected 
an attempt to add a backplane PCI 
device that is already being 
maintained by the RH driver.

HSI_STATUS_DEVICE_CREATION_FAILED The creation of a Universal PCI 
Table entry failed.

HSI_STATUS_DEVICE_ENTRY_NOT_FOUND A search for a Universal PCI Table 
entry failed to return any results.

HSI_STATUS_DEVICE_EXTRACTION_FAILED The PCI Configuration Module was 
unable to successfully remove the 
device entry information from the 
Universal PCI Table located internal 
to the Redundant Host driver.

HSI_STATUS_DEVICE_INSERTION_FAILED The PCI Configuration Module was 
unable to successfully insert the 
device entry information into the 
Universal PCI Table located internal 
to the Redundant Host driver.

HSI_STATUS_DEVICE_NOT_CONTROLLED The operation failed because the 
specified device was not controlled 
by the local Host
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  107



Redundant Host Function Return Values
HSI_STATUS_DEVICE_SEARCH_FAILED The search for this device failed to 
be resolved. This does not mean that 
the device does not exist, but simply 
that the Universal PCI table located 
in the querying Host did not resolve 
this search.

HSI_STATUS_FAILED_DEVICE_EXTRACT_SEND The PCI Configuration Module was 
unable to successfully send a device 
extraction message from the 
detecting Host to the Host that has 
no visibility of the backplane device.

HSI_STATUS_FAILED_DEVICE_INSERT_SEND The PCI Configuration Module was 
unable to successfully send a device 
insertion message from the detecting 
Host to the Host that has no 
visibility of the backplane device.

HSI_STATUS_FAILURE The specified operation failed for an 
unspecified reason

HSI_STATUS_IMPLEMENTATION_DEFINED_MAX The upper boundary (inclusive) of 
the range of implementation-defined 
status codes; implementation-
defined status code shall fall into a 
consecutive range of status codes

HSI_STATUS_IMPLEMENTATION_DEFINED_MIN The lower boundary (inclusive) of 
the range of implementation-defined 
status codes; implementation-
defined status code shall fall into a 
consecutive range of status codes

HSI_STATUS_INSUFFICIENT_BUFFER The specified operation could not be 
completed because a buffer 
specified for output data to be 
returned has insufficient size; no 
data was written to the buffer in this 
case.

HSI_STATUS_INVALID_ADDRESS The operation failed because the 
specified address was invalid.

HSI_STATUS_INVALID_DEV_HANDLE The operation failed because the 
specified device handle was invalid.

HSI_STATUS_INVALID_EVENT The operation failed because the 
specified event was invalid.
108 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host Function Return Values
HSI_STATUS_INVALID_PARAMETER The specified operation could not be 
completed because one or more 
input parameters were not valid.

Examples:

•  NULL pointer

•  PCI bus number greater than 255

•  Slot number out of range

•  Malformed Subsystem ID mask 
for the Alternate HS_CSR Interface

HSI_STATUS_NO_DATA_DETECTED The specified operation could not be 
completed because no meaningful 
data could be returned to the caller 
as the result of the operation.

Examples:

•  Board presence status could not 
be determined when the slot was 
powered.

•  Board health status could not be 
determined when the slot was not 
powered.

HSI_STATUS_NO_MEMORY The specified operation could not be 
completed because memory could 
not be allocated

HSI_STATUS_NO_SUCH_BRIDGE The PCI-to-PCI bridge information 
found in the Redundant Host System 
Informational Table did not match 
the actual location of the given 
bridge device.

HSI_STATUS_NO_SUCH_DEVICE The specified operation could not be 
completed because the device upon 
which the requested operation was 
to be performed did not exist. This 
code covers cases where a device 
does not exists at all as well as 
where the user does not have the 
rights to perform the operation on 
the particular object.

HSI_STATUS_NO_SYS_RH_TABLE_FOUND The Redundant Host System 
Informational Table could not be 
retrieved.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  109



Redundant Host Function Return Values
HSI_STATUS_NOT_AVAILIBLE The specified operation could not be 
completed because necessary 
functionality was not available at the 
time of the call.

HSI_STATUS_NOT_READY The specified operation failed 
because the device was not ready to 
handle the operation

HSI_STATUS_NOT_SUPPORTED The specified operation is not 
supported

HSI_STATUS_OBJECT_DOES_NOT_EXIST The specified operation could not be 
completed because an object 
specified in input parameters did not 
exist.

HSI_STATUS_OPERATION_ABORTED The specified operation was aborted 
/ canceled

HSI_STATUS_OPERATION_INTERRUPTED The specified operation was 
interrupted by another operation

HSI_STATUS_OPERATION_NOT_APPLICABLE The specified operation could not 
completed because the operation 
was not valid for the current device 
context or interface status.

HSI_STATUS_PENDING The operation was started but 
returned before being completed. 
The operation will be completed 
asynchronously.

HSI_STATUS_REQUEST_DENIED The specified operation request was 
denied due to security reasons.

HSI_STATUS_TIMEOUT The operation timed out.

HSI_STATUS_UNABLE_TO_BUILD_UPT The Host’s Universal PCI Table 
failed to be populated properly.

HSI_STATUS_UNABLE_TO_COPY_APP_DATA The operation was unable to access 
the data due to an error coping the 
application data

HSI_STATUS_UNABLE_TO_LOCATE_P2P_BRIDGES The Redundant Host driver was 
unable to locate the PCI-to-PCI 
bridges that allow the system master 
to access backplane devices.

HSI_STATUS_UNABLE_TO_MAP_CMOS The Redundant Host was unable to 
successfully map the System 
Information table found in the 
CMOS.

HSI_STATUS_UNABLE_TO_REASSIGN_RESOURCE
S

The Redundant Host driver was 
unable to successfully reassign the 
backplane devices allocated 
resources.
110 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Redundant Host Function Return Values
HSI_STATUS_UNABLE_TO_SEND_PACKET The Redundant Host was 
unsuccessful in sending an inter-
Host message between the 
redundant system masters.

HSI_STATUS_UNSUCCESSFUL_TRANSLATION The Redundant Host driver failed to 
translate the Slot-Path information 
for a P2P Bridge into a bus-device-
function descriptor.

HSI_STATUS_UNSUPPORTED_PLATFORM The operation is not supported by 
the current Hardware Platform

HSI_STATUS_UPT_INSERTION_FAILED The Redundant Host driver failed to 
successfully insert a backplane 
device into the internal Universal 
PCI Table.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  111



Redundant Host Function Return Values
This page intentionally left blank.
112 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



HSK Device Driver Interface for 
VxWorks* 5.4 C

The knowledge required to recompile the VxWorks kernel, as well as understand how the HSK 
device driver integrates with VxWorks, requires a high degree of competency with this operating 
system in order to gain the most benefit from an RH based system. 

Whether you are modifying an existing driver or designing the device driver from scratch, adding 
RH-aware functionality is a straightforward process for an experienced VxWorks programmer. The 
driver must be written so it can transition from an Initialized state to a Quiesced state, and from a 
Quiesced state to an Active state and back without being reloaded or re initialized. 

When compiled, the provided driver-code template module makes available a series of function 
calls matched to the required callbacks list in the HSK Driver Instantiation Code Segment. This 
template must be populated with driver and device initialization functions. You can directly move 
existing code segments from a driver into the template.

HA functions must be incorporated into any peripheral device driver used within a High-
Availability system. You need to restructure some of the device drivers to add these enhancements. 
They should be included on a conditional basis for the drivers to operate in both High-Availability 
and non-High-Availability systems.

Devices that do not conform to the CompactPCI Hot-Swap specification (PICMG 2.1) may not 
fully benefit from High-Availability architecture and may unexpectedly and adversely affect 
performance. 

Note: Devices must not assert interrupts before the appropriate device drivers have been loaded.

Note: Device PCI configuration must match the CompactPCI specification. Implement the capability 
register identifier and bit layout for the Status register as defined in the PICMG 2.1 specification.

During instantiation, the device driver must register itself with the RH Manager. Registration is 
necessary in order for the RH Manager to notify an interested backplane device driver that a 
particular device is transitioning between device accessibility states. See theFigure 6, “Multi-
Stated Driver Flowchart” on page 33 for a graphical display of High-Availability state transitions.

When a driver registers itself with the HA Manager, it passes an HA Device object containing 
callback function entries populated by the driver, a driver compatibility list, and a driver object 
extension. A callback function is a pointer to a function that is in turn called by the HA Manager 
whenever a driver state change is required or message distribution event occurs for a particular 
device. 

C.1 HSK Driver Object Declaration

After a driver is registered, it can send and receive the following message packets from a 
reciprocating driver on the Redundant Host. The system call for a driver to register is 
HARegisterDriver. 
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  113



HSK Device Driver Interface for VxWorks* 5.4
struct _RH_HSK_DRV_OBJ 
{
    CB_RH_ADD_DEVICE    AddDevice;

    CB_RH_PNP           StartDevice;

    CB_RH_PNP           StopDevice;

    CB_RH_PNP           RemoveDevice;

    CB_RH_PNP           SurpriseRemoval;

    PRH_DEVICE_INFO     DeviceInfo;

    PRH_DRIVER_EXT      DriverObjectExt;

} RH_HSK_DRV_OBJ, *PRH_HSK_DRV_OBJ;

The DriverExtension contains a pointer to a structure defined by the driver writer, and is context 
specific to the registered device driver. The device information structure shown below indicates to 
the HA Manager which devices should be associated with the registered driver. Upon registration, 
the HA Manager scans all the devices within its domain and calls the AddDevice driver callback 
function for all matching devices, or those devices whose attributes specified in the device 
compatibility list match any given device found within the system. 

The listSize value indicates the number of compatibility device entries defined by the device 
information structure. While several different fields found in the compatibility device structure 
exist, only those fields requiring HA Manager filtering need to be specified. The ValidFields entry 
is used to indicate which fields are being used.

C.2 HSK Device Information Structure

struct _haDeviceInfo 
{
    UINT32              ListSize;

    RH_COMPAT_DEVICE    CompatDevList[1];

} RH_DEVICE_INFO, *PRH_DEVICE_INFO;

struct _RH_COMPAT_DEVICE 
{
    UINT32  ValidFields;

    UINT16  VendorID;

    UINT16  DeviceID;

    UINT8   RevisionID;

    UINT8   ProgIf;

    UINT8   SubClass;
114 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



HSK Device Driver Interface for VxWorks* 5.4
    UINT8   BaseClass;

    UINT16  SubVendorID;

    UINT16  SubSystemID;

} RH_COMPAT_DEVICE, *PRH_COMPAT_DEVICE;

C.3 HSK Driver Instantiation Code Segment

The following code segment populates the HA Driver object. Return status validation has been 
omitted, but an HA device driver should respond appropriately to failed return values.
STATUS RHDrv(void)

{

RH_DEVICE_INFO* devInfo = NULL;
RH_HSK_DRV_OBJ* drvObj = NULL;

/* Create our RH data object for Rh driver registration */
drvObj = (RH_HSK_DRV_OBJ*)malloc(sizeof(RH_HSK_DRV_OBJ));  
memset(drvObj, 0x00, sizeof(RH_HSK_DRV_OBJ));

/* Create the device info object */ 
devInfo = (RH_DEVICE_INFO*)malloc(sizeof(RH_DEVICE_INFO) + 

    sizeof(RH_COMPAT_DEVICE));
memset(devInfo, 0x00, sizeof(RH_DEVICE_INFO) + sizeof(RH_COMPAT_DEVICE));

devInfo->ListSize = 2;
devInfo->CompatDevList[0].VendorID = DEC;
devInfo->CompatDevList[0].DeviceID = DEC_21554;
devInfo->CompatDevList[0].ValidFields =       COMPAT_LIST_CHECK_VENDOR |                 
COMPAT_LIST_CHECK_DEVICE;
devInfo->CompatDevList[1].VendorID = INTEL;
devInfo->CompatDevList[1].DeviceID = INTEL_21555;
devInfo->CompatDevList[1].ValidFields = COMPAT_LIST_CHECK_VENDOR | 
COMPAT_LIST_CHECK_DEVICE;
/* Attach the device list to our RH driver object */
drvObj->DeviceInfo = devInfo;
/* Set pointers to our hotplug callback routines */
drvObj->AddDevice       = bptdAddDevice;
drvObj->StartDevice     = bptdStartDevice;
drvObj->StopDevice      = bptdStopDevice;
drvObj->RemoveDevice    = bptdRemoveDevice;
drvObj->SurpriseRemoval = bptdRemoveDevice;
/* Register this driver's Interface with the RH/HSK driver */
rhHskRegisterDriver(drvObj);

return OK;

}

High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  115



HSK Device Driver Interface for VxWorks* 5.4
A driver can have itself removed from the HSK Manager’s registry by calling the 
rhHskUnregisterDriver routine. Use the RH driver object as an input parameter for this routine. If a 
driver requests to unregister itself and any of the driver’s devices are not in the uninitialized state, 
the rhHskUnregisterDriver function returns with an unsuccessful status.

The following code segment illustrates an AddDevice function. This callback has two objectives:

• The driver gives a status to a device it controls and allocates any internal values associated 
with a specific device. 

• The driver must create a device object that is used by the HSK Manager to communicate to the 
Redundant Host-aware device driver which device is being exercised. 

The AddDevice function is called once for every device associated with the registered driver. This 
association is determined by the compatibility device definition passed to the rhHskRegisterDriver 
function as shown in the previous code sample.

C.4 Redundant Host-Aware Callback Definitions

This section describes callback function syntax and functionality. 

C.4.1 PRH_DEVICE_OBJ AddDevice

AddDevice is called for each device associated with a particular device driver after the driver 
registers itself with the HSK Manager. During the AddDevice routine, the device’s internal 
structures are set up and a device object is created. A device object is a device context used by the 
RH callback functions to perform appropriate operations on the device. No further actions are 
required after an AddDevice call on a Standby Host. On an active system master, the device driver 
should initialize the actual device.

Syntax
(PRH_DRIVER_EXT driverExt, PCI_LOCATION pci)

Parameters

driverExt

Pointer to a driver object extension. This data extension is specific to the driver that allocated it and 
can be used for whatever purposes the driver sees fit.

pci

A PCI location structure. This structure contains the PCI bus, device, and function location where 
the device being notified of the AddDevice call is located.

Return Value

Returns a pointer to a driver-defined device object. This object pointer is kept by the HSK Manager 
and used as an input parameter to the RH device driver callback functions. If the AddDevice call is 
unsuccessful, than a NULL pointer value is returned.
116 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



HSK Device Driver Interface for VxWorks* 5.4
C.4.2 HSI_STATUS StartDevice

StartDevice is called for a device driver to commence or resume activity with its associated device. 
Before this callback is invoked, the device should be fully initialized, and the device driver should 
be ready to begin hardware interaction. If unsuccessful status is returned by this function, the HSK 
Manager places this device into an unavailable state, meaning device activity suspends, although 
re-initialization of this device may occur later. This callback is made only by an active system 
master.

Syntax

( PRH_DEVICE_OBJ deviceobject )

Parameters

deviceobject

Pointer to a device object returned by the AddDevice call. This data is a device context allowing 
the device driver to identify the specific device whose state is changing to running. Device-specific 
data is located in this object. The HA Manager places no restrictions on size or type of data used for 
two reasons:

• The HSK Manager has no direct knowledge of the structure of this information

• The HSK Manager is not required to perform any actions with this object

Return Value

HSI_STATUS_SUCCESS if successful; otherwise HSI_STATUS_FAILURE

C.4.3 HSI_STATUS StopDevice

StopDevice is invoked by the HSK Manager when activity to the specified device is suspended. 
The driver terminates all outstanding transactions if possible and rejects further device requests for 
device access. If the driver attempts to process a request after receiving this message, a system 
crash may occur because the driver may have lost or is losing visibility of the backplane device. 

It is up to the device driver to enter a quiescent state, meaning if the device driver is still 
functioning, it must perform the following tasks:

1. Normalize all data

2. Release resources that may have been allocated for specific transactions

3. Return to a pre-StartDevice hibernation state ready to receive a StartDevice callback in order 
to resume device activity

Syntax

( PRH_DEVICE_OBJ deviceobject )

Parameters

deviceobject
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  117



HSK Device Driver Interface for VxWorks* 5.4
Pointer to a device object. This data is a device context allowing the device driver to identify the 
specific device whose state is changing to stopped. Device-specific data is located in this object. 
The HA Manager places no restrictions on size or type of data used for two reasons:

• The HSK Manager has no direct knowledge of the structure of this information

• The HSK Manager is not required to perform any actions with this object

Return Value

HSI_STATUS_SUCCESS if successful; otherwise HSI_STATUS_FAILURE

C.4.4 HSI_STATUS RemoveDevice

RemoveDevice is called when the HA Manager detects a device being removed from the 
backplane in an orderly fashion. “Orderly” means that the device and driver adhere to the PICMG 
2.1 CompactPCI Hot-Swap Specification. The driver should release all previously allocated 
resources, including the device object extension. After returning a successful completion status to 
the HA Manager, the device state is set to Uninitialized. Once a device is in this state, an 
AddDevice and StartDevice call combination are required for the device driver to begin 
communications with the actual device.

Syntax

( PRH_DEVICE_OBJ deviceobject )

Parameters

deviceobject

Pointer to a device object. This data is a device context, allowing the device driver to identify the 
specific device whose state is changing to removed. Device-specific data is located in this object. 
The HA Manager places no restrictions on size or type of data used for two reasons:

• The HSK Manager has no direct knowledge of the structure of this information

• The HSK Manager is not required to perform any actions with this object

Return Value

HSI_STATUS_SUCCESS if successful; otherwise HSI_STATUS_FAILURE

C.4.5 HSI_STATUS SurpriseRemoval

SurpriseRemoval notifies the device driver that the system no longer has visibility to the device; 
for example, if an operator removes a board without waiting for blue hot-swap LED illumination, 
or if a hostile takeover occurs in which backplane control was transitioned to the Redundant Host 
without an orderly handoff.

The driver for this device should fail any outstanding I/O and release the hardware resources used 
by the device. The driver must ensure that no attempts are made to access the device because it is 
no longer present. Following the successful return of this callback, the HSK Manager calls the 
driver’s RemoveDevice callback routine, where an orderly deallocation of device driver resources 
can occur.
118 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



HSK Device Driver Interface for VxWorks* 5.4
Syntax

( PRH_DEVICE_OBJ deviceobject )

Parameters

deviceobject

Pointer to a device object. This data is a device context allowing the device driver to identify the 
specific device that experienced a surprise removal by an operator. Device-specific data is located 
in this object. The HA Manager places no restrictions on size or type of data used for two reasons:

• The HSK Manager has no direct knowledge of the structure of this information

• The HSK Manager is not required to perform any actions with this object

Return Value

HSI_STATUS_SUCCESS if successful; otherwise HSI_STATUS_FAILURE

C.5 RH-Aware Message Registration Definitions

In order to facilitate a graceful failover between Hosts and the devices they control, Intel provides a 
set of functions that allow backplane device drivers and the devices they control to synchronize 
state information. State information is anything that the device driver writer feels is necessary for 
graceful mode transitions. In this case, a mode transition is any state change that starts or stops 
device interaction (for example, a takeover).

The rhHskRegisterMsgCallback call allows a device to register a message callback with the RSS 
driver. This message callback is called by the RSS driver whenever a message is passed from a 
device driver on one Host to the corresponding device driver on another Host.

The rhHskSendMessage call allows messages to be sent from one Host to the corresponding 
instance of a device on another Host. This function takes a packet of RSS driver transparent data 
and redirects it to the registered receive message callback on the opposite Host. The RH driver 
redirects this data using the pci_dev structure entry specified in the input parameter of the 
rhHskSendMessage function call. This information is used to identify the device driver that 
receives the data packet.

The rhHskUnregisterMsgCallback call is used to unregister a receive callback function associated 
with the previously registered device.

The following topics describe the syntax and functionality of the receive message callback register 
and unregister functions. 

C.5.1 HSI_STATUS rhHskRegisterMsgCallback

This function associates the receive message callback with a particular instance of a device. Only 
one device/message callback association is allowed at a time. If this call is performed twice for the 
same device, an error value is returned.

Syntax

( PCI_LOCATION pci, RH_HSK_RH_PROCESS_PACKET callback , PVOID pContext)
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  119



HSK Device Driver Interface for VxWorks* 5.4
Parameters

pci

A PCI location structure. This structure contains the PCI bus, device, and function location of the 
device being associated with the message callback routine.

callback

This parameter is a callback pointer, registered with the HSK Manager, that is the receiver function 
for messages being sent to a particular device’s registering device driver. The message callback 
format is specified in Section C.6.1, “RH_HSK_RH_PROCESS_PACKET” on page 121.

pContext

This parameter is a context value that is passed to the process packet function. This is a context free 
value, which means that the value is not modified by the message routing system, and is passed in 
its entirety.

Return Value

HSI_STATUS_SUCCESS if successful; otherwise HSI_STATUS_FAILURE

C.5.2 int rhHskUnregisterMsgCallback

This function disassociates the receive message callback function from the device specified by the 
PCI location.

Syntax

( PCI_LOCATION pci  )

Parameters

pci

A PCI location structure. This structure contains the PCI bus, device, and function location of the 
message callback function being disassociated.

Return Value

HSI_STATUS_SUCCESS if successful; otherwise HSI_STATUS_FAILURE

C.6 Process Packet Callback Definition

This section describes the syntax and functionality of the process packet callback function.
120 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



HSK Device Driver Interface for VxWorks* 5.4
C.6.1 RH_HSK_RH_PROCESS_PACKET

RH_HSK_RH_PROCESS_PACKET is called when a message packet is being redirected to a 
device driver for synchronization purposes. The RH driver validates the data packet header in 
addition to performing a CRC-16 check of the data payload. The payload part of the packet is 
driver dependent and defined by the driver developer. The RH driver confirms the validity of the 
CRC-16 value within the packet without validating packet contents.

Syntax

( UINT8* pBuf, int iLen, PVOID pContext  )

Parameters

pBuf

Pointer to a data packet being received from the RH driver. It is the responsibility of the device 
driver to validate the packet contents. Upon returning from this callback, the RH driver deallocates 
the data packet. The data packet must be smaller than 1KB. The RH driver places no restrictions on 
the type of data used for two reasons:

• The RH driver has no direct knowledge of the structure of this information

• The RH driver is not required to perform any actions with this object

len

Length in bytes of the data packet being sent.

pContext

This parameter is a context value that is passed to the process packet function. This is a context free 
value, which means that the value is not modified by the message routing system, and is passed in 
its entirety.

Return Value

None

C.7 RH-Aware Send Message Definition

This section describes the syntax and functionality of the send message function.

C.7.1 HSI_STATUS rhHskSendMessage

This function initiates the sending of a data packet from a device driver on the Active Host to the 
corresponding device driver on the Redundant Host.

Syntax

(PRH_DATA_PACKET pPacket, UINT32 iLen,  PCI_LOCATION pci )

Parameters
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  121



HSK Device Driver Interface for VxWorks* 5.4
pPackett

Pointer to a data packet being sent to the specified device driver. It is the responsibility of the 
device driver to validate the packet contents. Upon returning from this callback, the RH driver 
deallocates the data packet. The data packet must be smaller than 1KB. The RH driver places no 
restrictions on the type of data used for two reasons:

• The RH driver has no direct knowledge of the structure of this information

• The RH driver is not required to perform any actions with this object

iLen

Length in bytes of the data packet being sent.

pci

A PCI location structure. This structure contains the PCI bus, device, and function location of the 
device that is to receive the message packet.

Return Value

HSI_STATUS_SUCCESS if successful; otherwise HSI_STATUS_FAILURE

C.8 Alternate HS_CSR Interfaces

The Redundant Host Software infrastructure provides support for alternate HS_CSR 
implementations as defined by the PICMG 2.1 CompactPCI Hot Swap Specification. For a detailed 
description and API details please refer to Hot Swap Infrastructure Interface Specification, PICMG 
2.12, specifically in the Alternate HS_CSR Interfaces chapter.
122 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



RH Device Driver Interface for 
Linux* 2.4 D

The High-Availability RH architecture leverages both the capabilities of the native hot-pluggable 
Linux driver model and the Hot-Swap Kit drivers to offer ultra-quick takeovers while maintaining 
maximum device serviceability. The Linux hot-pluggable driver model not only provides hot 
extraction of backplane devices, but also dynamic device insertion. The Linux hot-pluggable driver 
model is a stated driver architecture that is used by RH drivers to survive system switchovers with 
a minimum of service interruptions. For further details on this driver model please refer to the 
Linux Device Drivers Book version 2 published by O’Reilly and Associates. Specifically the Hot-
Pluggable driver extension is documented in the PCI Interface chapter.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  123



RH Device Driver Interface for Linux* 2.4
This page intentionally left blank.
124 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Design Guideline for Peripheral VendorsE

The following topics present guidelines for designing a device driver for use in the Intel 
NetStructure Redundant Host environment.

E.1 Non Bus Mastering Peripheral

Peripheral devices that are not masters p resent no complications for a Redundant Host 
environment. These devices do not perform data writes into System Master memory. They only 
request the System Master to read data from the device.

Use of the synchronization mechanism provided allows the System Masters to maintain state 
information. The domain owner should ensure its standby/backup checkpoints any necessary data 
before clearing it from the peripheral device. If a catastrophic failure occurs before successful 
checkpointing of important data, the standby/backup can recover the data from the peripheral 
device itself and continue operation without data loss.

E.2 Bus Mastering (DMA Capable) Peripheral

It is very important to data coherency that peripheral devices that perform DMA transactions into 
System Master memory ensure the data is received and processed by the System Master before 
reusing its local buffer. This allows the domain owner to checkpoint the data to the backup/standby 
before acknowledging the transaction. If a catastrophic failure occurs before successful 
checkpointing of important data, the standby/backup is able to recover the data from the peripheral 
device itself and continue operation without data loss.

It is also important to note that during a failover from one domain owner to another, buffers on 
these SBCs are guaranteed not to be in the same physical location unless the device drivers manage 
this action. In the event of different physical buffer address locations, the device driver is required 
to re-initialize the device to point to the new buffer address.

E.3 Support for Unmodified Standard Drivers

In order for a Redundant Host CompactPCI architecture to provide Ultra-quick switchovers in a 
seamless manner, a certain level of support is required of the device drivers that access backplane 
peripherals. If the backplane device drivers that reside on the RH system do not adhere to the HA 
Device Driver interfaces stated in the previous two appendices (depending on whether the driver is 
supporting VxWorks or Linux), then the system state after a switchover will quite possibly be 
volatile and a system crash will more then likely occur. 
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  125



Design Guideline for Peripheral Vendors
This page intentionally left blank.
126 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Porting ZT 5550 HA Applications to 
PICMG 2.12 F

The PICMG 2.12 base API (described in Chapter 6) and IPMI replace the functionality of the Host 
Controller API used with the ZT 5550 system master board. This appendix provides information 
for porting applications that were written for the ZT 5550 to a PICMG 2.12 based system. The 
following table summarizes the changes in the functionality.

Category 
Functions ZT 5550 Functions Redundant Host Functions Notes

Connection 
Management HAConnect RhOpen

HADisconnect RhClose

RhEnumerateInstances, 
RhGetInstanceID

System 
Information

HAGetHostName, 
HAGetHostIP RhGetHostName

HAGetSlotID No Directly Equivalent Function

RhGetDomainCount, 
RhGetDomainNumbers, 
RhGetDomainSlotPath, 
RhGetDomainSlotPath, 
RhGetDomainSlots, 
RhGetSlotDomain, 
RhGetCurrentHostNumber, 
RhGetHostCount, 
RhGetHostNumbers, 
RhGetDomainAvailabilityToHos
t, 
RhGetPhysicalSlotInformation, 
RhGetSlotChildInformation

Domain Status 
and Control HAGetHostStatus RhGetDomainOwnership, 

RhGetHostAvailability
No function for determining if the 
Redundant Host is "Alive"

HAConfigurationMode RhSetHostAvailability

HAGetModeConfig

HASetModeConfig

HAActivateModeSele
ct

RhSetHwDestinationHost, 
RhPerformSwitchover

HAClearPersistentFla
gs

HAInitiateTakeover RhPerformSwitchover

HASetHCC RhSetHostAvailability, 
RhPerformSwitchover

Many of the HASetHCC options 
can only be effected through 
IPMI. Some are no longer 
supported due to hardware 
limitations.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  127



Porting ZT 5550 HA Applications to PICMG 2.12
RhGetHwDestinationHost, 
RhPrepareForSwitchover, 
RhCancelPrepareForSwitchov
er, 
RhGetDomainSwConnectionSt
atus, 
RhGetSlotSwConnectionStatus

Event 
Notification HAEnableNotification

RhEnableDomainStateNotificat
ion, 
RhEnableSwitchoverNotificatio
n, 
RhEnableSwitchoverRequestN
otification, 
RhEnableUnsafeSwitchoverNo
tification

HADisableNotification RhDisableNotification

Host Control HAHostControl This functionality has been 
moved to IPMI.

Fault 
Management 
Configuration

HAGetFaultSeverity, 
HASetFaultSeverity, 
HAGetIsolationConfig
, 
HASetIsolationConfig

This functionality has been 
moved to IPMI.

System 
Diagnostics

HAEnableDiagnostics
, 
HADisableDiagnostic
s

This functionality has been 
moved to IPMI.

Watchdog 
Functionality

HAWatchdogConfig, 
HAWatchdogReset

This functionality has been 
moved to IPMI.

Bus 
Management 
Functions

HAGetGNTMasks, 
HASetGNTMasks, 
HAResetBus

This functionality has been 
made private to the RH Driver. 
There are no functions provided 
to give direct control over this 
functionality.

Fault 
Simulation

HAGetDiagnosticsRe
gister, 
HAGenerateFault

This functionality is not longer 
supported.

Ethernet 
Routing

HAGetEthernetRo
uting, 
HASetEthernetRou
ting

This functionality is not longer 
supported though any API. It 
can only be controlled from the 
BIOS setup screen.

Counter 
Function

HACounterConfig, 
HACounterRead, 
HACounterWrite, 
HACounterEnable, 
HACounterDisable

This functionality is not longer 
supported. The counter 
hardware is not present on most 
boards.

Miscellaneous 
Functions

HAGetBHTimeout, 
HASetBHTimeout, 
HASetUserLEDs

This functionality is not longer 
supported. This is primarily 
because the need for these 
functions has been eliminated.
128 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



RH Switchover on OS Crash G

The High-Availability RH architecture enables the system master board to perform a switchover to 
the backup host in the event of a system crash. 

Under the Linux* operating system the RH Software patches the Linux kernel to perform a 
switchover whenever a kernel panic occurs. In addition, the host board can be forced to reboot 
under these circumstances by simply adding the string “panic=1” in the append statement found in 
the lilo.conf configuration file.

Under the VxWorks* operating system this same switchover/reboot functionality is attached to the 
NMI interrupt handler. To force a system switchover and reboot under VxWorks, you can configure 
the ZT 5524 watchdog timeout to force an NMI interrupt to be generated. This forces the modified 
NMI handler to be activated in the event that the ZT 5524 watchdog is not strobed in a suitable 
amount of time. This causes a switchover and reboot of the failed host to occur. See the Intel® 
NetStructure™ ZT 5524 System Master Processor Board Technical Product Specification for 
information about configuring the watchdog/NMI interrupt. For more information on obtaining 
documentation, see Section H.2, “User Documentation” on page 131.
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  129



RH Switchover on OS Crash
This page intentionally left blank.
130 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Data Sheet Reference H

H.1 CompactPCI

Information about CompactPCI specifications is available from PICMG* (PCI Industrial 
Computers Manufacturers Group):

 https://www.picmg.org/compactpci.stm

H.2 User Documentation

The latest Intel NetStructure product information and manuals are available on the Intel® 
NetStructure™ Website. BIOS and driver updates are also available from this site. http://
developer.intel.com/design/network/products/cbp/linecard.htm.

H.3 VxWorks* 

The Wind River* VxWorks Programmer’s Guide is available at:

http://www.windriver.com/support/
High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  131

https://www.picmg.org/compactpci.stm
http://developer.intel.com/design/network/products/cbp/linecard.htm
http://developer.intel.com/design/network/products/cbp/linecard.htm
http://www.windriver.com/support/


Data Sheet Reference
This page intentionally left blank.
132 High Availability Software for the Intel® NetStructureTM ZT 4901 Technical Product Specification  



Index

A
activation 32
API

hot swap 26, 77
IMPI 25
redundant host 25, 37
slot control 26, 85
switchover 61

architecture
high availability CPU 11

B
backplane 17, 20
baseboard management 26
bridge mezzanine 16
C
channel alert destinations 28
channel definitions 27
chassis management 19, 25
code modularity 24
CompactPCI 31, 131
configuration 25
D
demonstration utilities 95
device

add 34
driver synchronization 35
remove 35
resume operations 34
suspend operations 35

documentation 131
driver 31, 123

design 31
states 32, 33

drivers 20
E
event logging 25
event trigger 26

F
failover 96
fault configuration 26
fault remediation 25
H
handover 96
hardened applications 24
high availability 11, 18, 33
host domain 97
hot swap 77
hot swap API 26
HSI_STATUS RemoveDevice 118
HSI_STATUS rhHskRegisterMsgCallback
119
HSI_STATUS rhHskSendMessage 121
HSI_STATUS StopDevice 117
HSI_STATUS SurpriseRemoval 118
HsiCloseSlotControl 85
HsiGetBoardHealthy 87
HsiGetBoardPresent 86
HsiGetSlotCount 86
HsiGetSlotM66Enable 91
HsiGetSlotPower 88
HsiGetSlotReset 89
HsiOpenSlotControl 85
HsiSetSlotEventCallback 93
HsiSetSlotM66Enable 92
HsiSetSlotPower 89
HsiSetSlotReset 90
HSK 114, 115
HSK driver 113
I
imbCloseDriver 79
imbDeviceIoControl 79
imbGetAsyncMessage 81
imbGetIpmiVersion 84
imbGetLocalBmcAddr 83
imbIsAsyncMessageAvailable 82
Intel® NetStructureTM ZT 4901 High Availability Software Technical Product Specification  133



imbOpenDriver 79
imbRegisterForAsyncMsgNotification 82
imbSendIpmiRequest 81
imbSendTimedI2cRequest 80
imbSetLocalBmcAddr 83
imbUnregisterForAsyncMsgNotification 82
Initialization 32
int rhHskUnregisterMsgCallback 120
interface 95
IPMI API 25

API
IPMI 79

L
Linux 103, 123
M
mode

active/active 96
active/standby 96
cluster 96

modularity
code 24

multiple mode 96
P
peripheral vendors 125
PICMG 127
portability 21
PRH_DEVICE_OBJ AddDevice 116
process packet 120
Q
quiesced 32
R
redundancy 21, 23
redundant host 19, 28, 116, 119, 121, 123, 129

configuration 105
configuring infrastructure 105
definitions 39
function return values 107
installing software 103
installing source RPM 104

redundant host API 25, 37
redundant host interface 95
reporting 25
resource management 25

RH_HSK_RH_PROCESS_PACKET 121
RhCancelPrepareForSwitchover 65
RhClose 44
RhDisableNotification 75
RhEnableDomainStateNotification 70
RhEnableSwitchoverNotification 71
RhEnableSwitchoverRequestNotification 72
RhEnableUnsafeSwitchoverNotification 73
RhEnumerateInstances 42
RhGetCurrentHostNumber 51
RhGetDomainAvailabilityToHost 56
RhGetDomainCount 45
RhGetDomainNumbers 46
RhGetDomainOwnership 47
RhGetDomainSlotCount 49
RhGetDomainSlotPath 47
RhGetDomainSlots 49
RhGetDomainSwConnectionStatus 66
RhGetHostAvailability 55
RhGetHostCount 51
RhGetHostName 53
RhGetHostNumbers 52
RhGetHwDestinationHost 70
RhGetHwDestinationHostAndReset 37
RhGetInstanceID 44
RhGetPhysicalSlotInformation 56
RhGetSlotChildInformation 58
RhGetSlotDomain 50
RhGetSlotSwConnectionStatus 67
RhOpen 43
RhPerformSwitchover 67
RhPrepareForSwitchover 63
RhSetHostAvailability 54
RhSetHostName 37
RhSetHwDestinationHost 68
RSS host with bridge mezzanine 17
RSS processor board 16
S
security 25
Serviceability 21
serviceability 21
slot 97
slot control 85
134 Intel® NetStructureTM ZT 4901 High Availability Software Technical Product Specification 



slot control API 26
software 21

division of labor 22
portability 21
redundancy 21
serviceability 21

switchover 24, 97, 129
forced 62
fully cooperative 61
hardware initiated 63
hostile 63
partially cooperative 62

switchover API 61
system management 19, 25
T
Terminology 11
threshold 26
U
user interface 95
utilities 95
V
VxWorks 106, 131

HSK device driver 113
Intel® NetStructureTM ZT 4901 High Availability Software Technical Product Specification  135



This page intentionally left blank.
136 Intel® NetStructureTM ZT 4901 High Availability Software Technical Product Specification 


	Intel® NetStructure(tm) ZT 4901 High Availability Software
	Contents
	Figures
	Figure 1. High-Availability CPU Architecture
	Figure 2. RSS Processor Board Block Diagram
	Figure 3. RSS Host with Bridge Mezzanine Block Diagram
	Figure 4. High-Availability System Backplane Architecture
	Figure 5. Layered Host Application Diagram
	Figure 6. Multi-Stated Driver Flowchart

	Tables
	Table 1. Channel Definitions for ZT 5524
	Table 2. RH Channel Alert Destinations
	Table 3. PCI Tree Information Retrieval Flags
	Table 4. Events that Generate Notification Messages
	Table 5. Slot State Flags

	Revision History

	Document Organization 1
	Introduction 2
	2.1 Terminology
	2.2 High Availability Hardware Approach
	2.2.1 Processor Boards
	2.2.2 Bridge Mezzanine
	2.2.3 Backplane

	2.3 High-Availability Software Approach
	2.3.1 Host Application
	2.3.2 System Management
	2.3.3 Backplane Device Drivers


	Host Application Software 3
	3.1 Goals of the Host Application
	3.1.1 Serviceability
	3.1.2 Portability
	3.1.3 Redundancy

	3.2 Division of Labor
	3.3 Development Issues
	3.3.1 Redundancy
	3.3.2 Graceful Switchover
	3.3.3 Hardened Applications
	3.3.4 Code Modularity


	System Management 4
	4.1 Redundant Host API
	4.1.1 IPMI API
	4.1.2 Hot Swap API
	4.1.2.1 Slot Control API


	4.2 Baseboard Management Controller Firmware Enhancements
	4.2.1 Fault Configuration
	4.2.2 Isolation Strategies
	4.2.3 IPMI RH Channel Commands
	4.2.3.1 RH Channel Enabled
	4.2.3.2 RH Channel Get RH BMC Address



	High Availability CompactPCI Device Drivers 5
	5.1 Device Driver Design
	5.1.1 Device Driver States
	5.1.1.1 Initialization
	5.1.1.2 Quiesced
	5.1.1.3 Activation

	5.1.2 Adding High-Availability Functionality
	5.1.2.1 Add Device
	5.1.2.2 Resume Operations
	5.1.2.3 Suspend Operations
	5.1.2.4 Remove Device
	5.1.2.5 Driver Synchronization


	5.2 Summary

	Redundant Host API 6
	6.1 Intel-Specific APIs
	6.1.1 RhSetHostName
	6.1.1.1 RhGetHwDestinationHostAndReset


	6.2 Redundant Host PICMG* 2.12 APIs
	6.2.1 Definitions and Types
	6.2.2 Initialization/Termination
	6.2.2.1 RhEnumerateInstances
	6.2.2.2 RhOpen
	6.2.2.3 RhClose
	6.2.2.4 RhGetInstanceID

	6.2.3 Domain and Host Information API
	6.2.3.1 RhGetDomainCount
	6.2.3.2 RhGetDomainNumbers
	6.2.3.3 RhGetDomainOwnership
	6.2.3.4 RhGetDomainSlotPath
	6.2.3.5 RhGetDomainSlotCount
	6.2.3.6 RhGetDomainSlots
	6.2.3.7 RhGetSlotDomain
	6.2.3.8 RhGetCurrentHostNumber
	6.2.3.9 RhGetHostCount
	6.2.3.10 RhGetHostNumbers
	6.2.3.11 RhGetHostName
	6.2.3.12 RhSetHostAvailability
	6.2.3.13 RhGetHostAvailability
	6.2.3.14 RhGetDomainAvailabilityToHost

	6.2.4 Slot Information API
	6.2.4.1 RhGetPhysicalSlotInformation
	6.2.4.2 RhGetSlotChildInformation

	6.2.5 Switchover API
	6.2.5.1 Switchover Scenarios and Theory of Operation
	6.2.5.2 RhPrepareForSwitchover
	6.2.5.3 RhCancelPrepareForSwitchover
	6.2.5.4 RhGetDomainSwConnectionStatus
	6.2.5.5 RhGetSlotSwConnectionStatus
	6.2.5.6 RhPerformSwitchover
	6.2.5.7 RhSetHwDestinationHost
	6.2.5.8 RhGetHwDestinationHost

	6.2.6 Notification, Reporting and Alarms
	6.2.6.1 RhEnableDomainStateNotification
	6.2.6.2 RhEnableSwitchoverNotification
	6.2.6.3 RhEnableSwitchoverRequestNotification
	6.2.6.4 RhEnableUnsafeSwitchoverNotification
	6.2.6.5 RhDisableNotification



	Hot Swap API 7
	IPMI API 8
	8.1 imbOpenDriver
	8.2 imbCloseDriver
	8.3 imbDeviceIoControl
	8.4 imbSendTimedI2cRequest
	8.5 imbSendIpmiRequest
	8.6 imbGetAsyncMessage
	8.7 imbIsAsyncMessageAvailable
	8.8 imbRegisterForAsyncMsgNotification
	8.9 imbUnregisterForAsyncMsgNotification
	8.10 imbGetLocalBmcAddr
	8.11 imbSetLocalBmcAddr
	8.12 imbGetIpmiVersion

	Slot Control API 9
	9.1 HsiOpenSlotControl
	9.2 HsiCloseSlotControl
	9.3 HsiGetSlotCount
	9.4 HsiGetBoardPresent
	9.5 HsiGetBoardHealthy
	9.6 HsiGetSlotPower
	9.7 HsiSetSlotPower
	9.8 HsiGetSlotReset
	9.9 HsiSetSlotReset
	9.10 HsiGetSlotM66Enable
	9.11 HsiSetSlotM66Enable
	9.12 HsiSetSlotEventCallback

	Demonstration Utilities 10
	10.1 Functional Description
	10.1.1 User Interface
	10.1.2 RH Interface
	10.1.2.1 Software Initiated Handovers
	10.1.2.2 Hardware Initiated Failovers
	10.1.2.3 Multiple Mode Capabilities
	10.1.2.4 Switchover Functions
	10.1.2.5 Host Domain Enumeration and Association
	10.1.2.6 Slot Information
	10.1.2.7 Notification, Reporting and Alarms

	10.1.3 IPMI Interface
	10.1.3.1 Fault Configuration
	10.1.3.2 Isolation Strategy

	10.1.4 Hot Swap Interface
	10.1.4.1 HS Functional Description
	10.1.4.2 Slot Information Structure
	10.1.4.3 Slot State

	10.1.5 Slot Control Interface


	Software Installation A
	A.1 Linux
	A.2 Installing the Redundant Host Software Kit
	A.3 Installing RH Source RPM
	A.4 Configuring the Redundant Host Infrastructure
	A.5 VxWorks (Tornado II Setup)

	Redundant Host Function Return Values B
	HSK Device Driver Interface for VxWorks* 5.4 C
	C.1 HSK Driver Object Declaration
	C.2 HSK Device Information Structure
	C.3 HSK Driver Instantiation Code Segment
	C.4 Redundant Host-Aware Callback Definitions
	C.5 RH-Aware Message Registration Definitions
	C.6 Process Packet Callback Definition
	C.7 RH-Aware Send Message Definition
	C.8 Alternate HS_CSR Interfaces

	RH Device Driver Interface for Linux* 2.4 D
	Design Guideline for Peripheral Vendors E
	E.1 Non Bus Mastering Peripheral
	E.2 Bus Mastering (DMA Capable) Peripheral
	E.3 Support for Unmodified Standard Drivers

	Porting ZT 5550 HA Applications to PICMG 2.12 F
	RH Switchover on OS Crash G
	Data Sheet Reference H
	H.1 CompactPCI
	H.2 User Documentation
	H.3 VxWorks*

	Index


